groovy
Runs a script written in Groovy.
Syntax
groovy CLASS_NAME
Required Parameter
CLASS_NAME
Name of the class you want to execute.
Description
Groovy is a dynamic object-oriented language developed with influence from languages such as Python and Ruby and runs on the JVM. The script file must meet the following constraints to be executed:
You need to specify the script file name in the following format: CLASS_NAME.groovy
The script files SHOULD be in data/araqne-logdb-groovy/query_scripts in the directory where Logpresso is installed.
You need to import and use the package provided by Logpresso. Use the following packages as needed.
groovy.transform.CompileStatic
org.araqne.logdb.groovy.GroovyQueryScript (required)
org.araqne.logdb.QueryStopReason
org.araqne.logdb.Row (required)
org.araqne.logdb.RowBatch
org.araqne.logdb.RowPipe
To improve the performance of Groovy scripts, refer to the following:
Avoid using string processing methods as much as possible. As the number of string objects increases, garbage collection occurs more frequently in the JVM.
Avoid using the split() and tokenize() methods as much as possible.
split() is very slow because it uses a regular expression internally.
Use indexOf() or substring() instead. Although the code is longer, it provides better processing performance.
Avoid using Pattern.compile(). Reusing the Matcher instance by calling Matcher.reset() provides better performance.
DO NOT use exceptions for the normal flow of control
If exceptions occur frequently, processing performance becomes significantly slower.
If possible, handle possible error cases through conditional testing.
Usage
Save the following script as ToAscii.groovy in data/araqne-logdb-groovy/query_scripts in the directory where Logpresso is installed.
import groovy.transform.CompileStatic;
import org.araqne.logdb.Row;
import org.araqne.logdb.groovy.GroovyQueryScript;

@CompileStatic(groovy.transform.TypeCheckingMode.SKIP)
class ToAscii extends GroovyQueryScript {
 def void onRow(Row row) {
 byte[] payload = row.get('payload')

 char[] chars = new char[payload.length];
 for (int i = 0; i < payload.length; i++) {
 char c = (char) payload[i]
 if (c < 32 || c > 126)
 c = '.'
 chars[i] = c
 }

 row.put('text', new String(chars))
 pipe.onRow(row)
 }
}
This script encodes the 32nd to 127th characters in ASCII format among the binary values decoded in the PCAP file and assigned on the payload field.
pcapfile /opt/logpresso/sonar/http-2.pcap | pcapdecode | groovy ToAscii
