Logpresso Query

Overview
Before You Start
User Interface Notation
Graphic user interface (GUI) elements are expressed as follows.
GUI Conventions
	Notation Format
	Description

	Menu 1 > Menu 2
	Displays the multi-level menu path using ">" in bold.

	[Tab]
	Displays the name of the tab

	Button
	Displays button names in bold.

Command Notation
The following table lists the notational conventions used for commands, options and input values in this manual.
Conventions for Commands
	Notation Format
	Description

	table araqne_query_logs
	Monospaced lowercase to input what you type as is.

	VALUE, TABLE, TABLE.INDEX, FIELD
	Monospaced uppercase to express what you need to enter according to the user environment.

	opt=value, [opt=value]
	Parameters of the commands in the form of "option=value". A pair of square brackets ([]) means this is an option you can omit.

	opt={true|false}, opt=INT{s|m|d|w|mon}
	Parameters that require you to select and specify one of the multiple values are enclosed in a pair of curly braces ({ }).

This manual uses the conventions listed above when describing the syntax of commands in this manual. For example, the syntax of the stream command is as follows:
stream [forward=BOOL] [window=INT{y|mon|w|d|h|m|s}] STREAM[, ...]
Acronyms, Abbreviations and Terms
This manual uses the following terms:
ENT
Abbreviation for Logpresso Enterprise
FRS
Abbreviation for Logpresso Forensic
GUID
Abbreviation for Globally Unique Identifier. A hexadecimal value generated from the unique identifier
MAE
Abbreviation for Logpresso Maestro
SNR
Abbreviation for Logpresso Sonar
STD
Abbreviation for Logpresso Standard
Table
Database object that contains all the data in a database
Web console
Web-based graphical user interface provided within Logpresso's suite
Running Queries in the Web Console
The standard SQL is a declarative language that allows you to obtain the data you want without having to specify the detailed process of data processing. However, the standard SQL has many constraints on processing unstructured data, as well as the drawback that the description of the streaming process is not natural.
Logpresso has inherited the design philosophy of Unix-based operating systems that maximize simplicity, cohesiveness, reusability, and flexibility. One command performs the smallest and the simplest task, but combining multiple commands helps effectively process complex and unstructured data.
The following sections describe how to use queries in the Logpresso web console and the basic structure of Logpresso query.
Query Menu Path by Product
You can use queries in the Logpresso web console. There are many interfaces where you can input query string, but a separate interface for running queries is also provided. The query menu by product suite is as follows:
ENT, STD: Query or Query > Query
MAE, SNR: Analysis > Query
Executing a Query
To execute a query, input the query string in the input box and click Run. The query string may be a short statement using a single command or may consist of multiple commands where data is passed from one to the next using pipes (|).
Query Keyboard Shortcuts
Query input box supports following keyboards shortcuts.
Query Keyboard Shortcuts
	Function
	Keyboard shortcut

	Executing a query
	Ctrl+Enter or Shift+Enter

	Viewing the command list and help
	Ctrl+Space

	Automatic alignment and indentation of query
	Ctrl+Shift+F

For viewing the command list or help (Ctrl+Space), the operation varies depending on whether you input a command.
If you press the shortcut keys without providing a command, you can see the command list appears.
If you press the shortcut keys after providing a command, you can see a list of options available appears.
Automatic alignment and indentation of query commands help the user understand long query commands written across multiple lines by automatically applying indentations and line breaks. This shortcut is only supported by MAE and SNR.
Query Types
Query types of Logpresso are roughly classified into four types depending on how they are executed.
Ad-hoc Query
An ad-hoc query refers to arbitrary queries that you can create and execute at any given time. You can programmatically execute queries at any given time through the log query menu of Logpresso's web console, the Logpresso terminal accessed via SSH, or the Logpresso client SDK.
If you switch a query that runs for a long time to the background, it will continue to run even when the current session is logged out or disconnected. You can then switch that query back to the foreground to see the result of the query.
Real-time Query
A real-time query refers to a query that processes data received in real time while running for a specified time range from the point of execution. It can use the logs in real time as soon as logs are collected by the log collector, the results of the stream query are output, or the data is provided in a table. This is useful for diagnosis because it immediately samples data without storing all the data on the disk.
Real-time query commands include logger, stream, and table.
Stream Query
A stream query refers to a query that runs indefinitely in the background for real-time data sources until the system shuts down. A stream query runs queries while continuously guaranteeing the input sequence.
For ENT and STD, you can find stream queries in Query > Stream. Stream queries support following three stream types as input:
Log Collector
All logs collected by the logger are provided into the stream query. For ENT and STD, you can configure the logger in LOG SOURCE, or for MAE and SNR, in Collect > Connector.
Table
Every time a new row is written to the table, it is provided into the stream query. It can be thought of as an evolved use case of the triggers used in a relational database management system (RDBMS). For ENT and STD, you can configure the table in Table, or for MAE and SNR, in System > Table.
Stream Query
You can use the output of other stream queries as input. Take, for example, a scenario in which a stream query that parses for unstructured logs is placed at the frontend, and multiple analysis stream queries that use that stream query as input are placed. A stream query is divided into streaming mode and refresh mode.
Streaming mode
If the query is configured only with commands—streamable commands—that do not rely on data input completion, you can set the stream query in streaming mode.
Refresh mode
For example, in the case of statistics and sorting, you can run operations only after the input of the entire data is completed, so the input completion signal is passed at regular intervals.
If you use stream queries to calculate statistics for specific time units and to store the result in an intermediate statistics table, and you design this table to query for the final statistical results, you can get statistical results in real time for large data streams while using very little disk space. You can use Groovy scripting for highly complex real-time analysis and processing.
Scheduled Query
Scheduled queries are executed according to the schedule specified by the user. You can selectively save query results and send the results that match the alarm conditions by email.
For ENT and STD, you can load the query results using the Saved query results in Query > Load.
Query Syntax
Format of Commands
A query consists of one or more commands. The basic units that make up a command are name of command, options, and objects.
Commands with Target Objects
The object may be a log collector, stream query, log parser, table where data is stored, or full-text index. Expressions or subquery commands are supported depending on the command. The composition of the command statements executed on such objects is as follows.
command-name [opt_1=VALUE] [opt_2=VALUE] ... OBJECT[, ...]
As an example of the simplest command statement, a command that queries the data in the system table araqne_query_logs is as follows:
table araqne_query_logs
Commands with No Target Objects
Commands with no objects are primarily used in commands that receive and process data from other commands. An example is a decodedns command. The composition is as follows.
FORWARDING_STATEMENT | command-name [opt_1=VALUE] [opt_2=VALUE] [opt_N=VALUE] ...
These commands receive and process the output returned by the forwarding command (FORWARDING_STATEMENT) as an input through a pipe (|).
Input Processing Using Pipes
In Logpresso, the output of one command can be passed to another command as an input using a pipe (|). For example, the following query only searches the logs whose login_name field is "root" in the araqne_query_logs table.
table araqne_query_logs
| search login_name == "root"
This query shows queries executed by the root account. Use the following query to calculate the statistics in 10-minute increments of how many rows containing the string "root".
table araqne_query_logs
| search login_name == "root"
| timechart span=10m count
In this way, the output of the first command is transferred to the input of the second command, the output of the second to the input of the third command, and the output of the third to the result of the query. The results of the query can be temporarily written to the disk or streamed instantly over the network, depending on the client's request.
Subquery
Some query commands execute nested commands in the command statement, receive the results, and then execute them. A nested command is called a subquery.
To express a subquery, enclose it within a pair of square brackets ([]). Subqueries are executed ahead of main query command. The records returned by a subquery are processed by the main query.
When there is a subquery, the structure of the command is as follows:
command [SUBCOMMAND_STATEMENT]
Comments
You can use the comment out command '#' to insert a description in the command line or comment out a single command line or consecutive command lines. In the query input box, the commented-out command line is grayed out.
Single-Line Comments
You can insert a '#' at the beginning of the command line to treat it as a comment.
A whitespace character is required after the '#'. If there is no whitespace character, commenting out is not applied.
Querying the CPU usage recorded in sys_cpu_log for the last hour
| table duration=1h sys_cpu_logs
| # eval total = kernel + user
In the above example, Querying the CPU usage recorded in sys_cpu_log for the last hour and eval total = kernel + user are commented out, and only table duration=1h sys_cpu_logs is executed.
Multi-line Comments
To create a multi-line comment, put # [at the start of your comment and] at the end.
table duration=1h sys_cpu_logs
| # [eval total = kernel + user
| search total > 10]
| sort _time
In the above example, the command inside the brackets is commented out, so the query that is executed is table duration=1h sys_cpu_logs | sort _time.
The comment out command # ignores subsequent strings and pipes (|) within the pair of square brackets ([]) that encloses the subquery. It ignores any line breaks in the subquery. In other words, it ignores the entire subquery and comments it out until you see the pipe outside the pair of square brackets.
table sys_cpu_logs
| # union [table sys_cpu_logs | limit 30]
| eval total = kernel + user
In the above example, the subquery union [table sys_cpu_logs | limit 30] is all commented out, so the query that is executed is table sys_cpu_logs | eval total = kernel + user.
Query Parameter
You can assign values to query parameters and use them as needed. This is useful when dynamically assigning values and executing queries because it uses expressions with functions instead of constants. You can use query parameters when executing a scheduled query, if you want to look up and process data for a week-range based on the current date, or if you want to execute a query using the parameter value you provide when running the procedure.
Declaration of Parameters
You can declare parameters using set or setq.
References to Parameters
You can refer to the value assigned to a parameter using the parameter reference function $().
Function
You can use functions in your query command. You can use a function wherever you can use an expression. However, the value returned by the function must be processable by the expression.
Procedure
Logpresso provides procedure that allows you to call the predefined query command like a function. This is similar to a DBMS procedure, and provides the following benefits:
Improve reusability and maintenance
You can improve reusability by modularizing queries that provide specific functionality through procedures. You just need to tell the user the name of the procedure and the parameters to use. You can maintain procedure with ease as you can redefine them without affecting other code.
Improve Security
Commands that connect to external systems such as dbquery, ftp, and sftp require profile privileges. Granting profile privileges directly to the user is insecure because the user can run arbitrary operations from the external system. However, Logpresso allows users to execute commands that require specific administrative privileges or configure commands that can run arbitrary tasks on local/remote hosts as procedures, and then manage user privileges so that users can use the desired tasks without a granted system-wide administrative privileges. For example, you can apply the administrative privileges in a way that limits user privileges to view a part of the source data, or masks and displays the source data.
Access to Logpresso’s system table
To access the Logpresso's system table, you must have administrative privileges. When the user needs to access the Logpresso's system setting information, Logpresso allows the user to access it through the procedure.
Defining the Procedure
You can define and manage procedures in the web console. Procedure management is available in the following paths:
(ENT, STD) Query > Procedure
(MAE, SNR) Analysis > Procedure
A query command to be used as a procedure may contain parameters or custom fields to use when calling the procedure.
The query defined in the procedure can use the $() function to refer to parameters passed by the user when calling the procedure. The following is an example:
table duration=1d sys_cpu_logs | search kernel + user >= $("threshold")
In the example query command, threshold is the parameter.
The most common mistake in writing a procedure is to write a query thinking that the $() function reference is replaced like a macro. The $() function can only be specified where an expression can be assigned in a query command. For example, the following procedure is not the correct query because dbquery does not support an arbitrary SQL statement input as an expression.
dbquery USERDB $("sql")
Calling Procedure
proc command calls and executes the procedure. See the description of the command on how to call it.
Enterprise Commands
Parameters
set
Evaluates expressions using functions or the like and then assigns that value to the parameter.
Syntax
set VAR_NAME=EXPR
Required Parameter
VAR_NAME = EXPR
Value obtained by evaluating the expression to the query parameter. On the right side of the command, you can use any expression that can be evaluated without a record at the time the query is executed.
It works regardless of whether whitespaces are inserted before or after the assignment operator (=).
You can use any expression that can be evaluated without a record at the beginning of the query.
The query parameter is valid for one query instance while it is alive.
If there are multiple set commands, they are evaluated in order from the left.
Description
The query parameter is valid for one query instance while it is alive, and you can use the set command to evaluate the parameter value at the time the query is parsed. The query string below is an example of using the table command to dynamically query data from 00:00 hour three days before to before 00:00 hour on the current day.
set from = string(dateadd(now(), "day", -3), "yyyyMMdd")
| set to = string(now(), "yyyyMMdd")
| table from=$("from") to=$("to") sys_cpu_logs
You can use the set command to set the query parameter as described above, and you can use the $() function to refer the value of the query parameter.
The options of each query command can be replaced with query parameters. For example, you can use query parameters when executing a scheduled query, if you want to look up and process data for a week range based on the current date, or if you want to execute a query using the parameter value you provide when running the procedure.
When you call the procedure, the values passed to the procedure's parameters are set as query parameters. Therefore, when you create or edit a procedure, you can use it with a $() function by assuming that the query string already has a value corresponding to the procedure parameter.
setq
Executes a subquery and sets the key-value pair in the first record as the query parameter.
Syntax
setq [SUBQUERY]
Required Parameter
[SUBQUERY]
Subquery command enclosed in a pair of square brackets ([]).
Description
This sets the field-value pair present in the first record of the result of executing the subquery as a query parameter. If the subquery returns one or more results, the command ignores them from the second record.
Subqueries consisting of setq commands are executed before all other commands in the entire query command. If there are multiple setq commands, they are executed sequentially.
Data Source
csvfile
Loads data in a comma-separated values (CSV) or tab-separated values (TSV) file. This loads the header information in the first line of the CSV or TSV file and uses it as a field name.
Syntax
csvfile [OPTIONS] PATH
Required Parameter
PATH
Path to the file from which you want to load the data. Using a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once. For example, if you enter allow-*.csv in PATH, you can load all files, such as "allow-ip.csv", "allow-user.csv", "allow-url.csv" at once. To load a file, the Logpresso daemon must have the read permission to the file.
Optional Parameter
cs=CHARSET
Character set (default: utf-8). This option is case-insensitive. Use the preferred MIME name or aliases registered in the following document as CHARSET: http://www.iana.org/assignments/character-sets/character-sets.xhtml
limit=INT
Maximum number of records to load (default: unlimited).
maxcol=INT
Maximum number of columns to load (default: 10,000). If the maximum number of columns is exceeded, use the rest option to define the processing method.
offset=INT
Number of records to skip (default: 0).
rest=BOOL
Boolean option to process the column data exceeding the maximum number specified by the maxcol option (default: f). See usage #3 and #4.
t: Puts data beyond the maximum number of columns specified by the maxcol option in the _rest field.
f: Discards the rest of the columns beyond the maximum number of columns specified by the maxcol option.
strict=BOOL
Compliance with RFC4180 (https://tools.ietf.org/html/rfc4180) (default: f). See Usage #5 to #8.
t: Strictly parses to conform RFC 4180 as the same as when you open the CSV file with Microsoft Excel. This option cannot be used when tab=t.
f: Flexibly parses the CSV file.
tab=BOOL
Option to use tab character as a separator (default: f).
t: Uses tab character as a separator. This is useful for processing tab-separated values (TSV) files.
f: Uses comma (,) as a separator.
Usage
Read the /opt/logpresso/wp-nginx.csv file.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/wp-nginx.csv
 | csvfile /opt/logpresso/wp-nginx.csv
Read 20 records after skipping the header line of /opt/logpresso/wp-nginx.csv file.
csvfile limit=20 offset=1 /opt/logpresso/wp-nginx.csv
Read only 4 columns in the /opt/logpresso/wp-nginx.csv file.
csvfile maxcol=4 /opt/logpresso/wp-nginx.csv
Read only 4 columns from the /opt/logpresso/wp-nginx.csv and assign the rest to the _rest field.
csvfile maxcol=4 rest=t /opt/logpresso/wp-nginx.csv
Data with a white space between the separator and the column. Compare the results of each query example.
When strict=t, if there is a whitespace between the separator and the column, the double quotes (") are recognized as a character and are not parsed as intended.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/csvfile-strict-option-test-1.csv
 | csvfile strict=t /opt/logpresso/csvfile-strict-option-test-1.csv
When strict=f, if the pair of double quotes ("") is matched, only the strings inside the pair of quotes are recognized as columns, so it is parsed as intended.
csvfile strict=f /opt/logpresso/csvfile-strict-option-test-1.csv
Data without a white space between the separator and the column.
Regardless of the strict value, there is no whitespace between the separator and the column, so it is parsed as intended.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/csvfile-strict-option-test-2.csv
 | csvfile strict=t /opt/logpresso/csvfile-strict-option-test-2.csv

 csvfile strict=f /opt/logpresso/csvfile-strict-option-test-2.csv
Data in which double quote characters (") are escaped with a backslash (\).
When strict=t, the command recognizes the escape character (\) as a general character, so if you use " when writing double quotes (") in a column enclosed in a pair of double quotes (" "), it is not parsed as intended.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/csvfile-strict-option-test-3.csv
 | csvfile strict=t /opt/logpresso/csvfile-strict-option-test-3.csv
When strict=f, two consecutive double quotes ("") and an escaped double quote (") are parsed as a double quote within the column as intended.
csvfile strict=f /opt/logpresso/csvfile-strict-option-test-1.csv
 csvfile strict=f /opt/logpresso/csvfile-strict-option-test-3.csv
fulltext
Searches for data stored in a table using a full-text index.
Syntax
fulltext [duration=INT{mon|w|d|h|m|s}] [from=yyyyMMddHHmmss] [to=yyyyMMddHHmmss] [limit=INT] [offset=INT] [order={desc|asc}] [tt=BOOL] EXPR [from TABLE[.INDEX], ...]
Required Parameter
EXPR [from TABLE[.INDEX], ...]
String literal or expression to match records in the table and/or index. If you specify only TABLE, all indexes in the table are retrieved. If you specify the same table or index multiple times, the same search results are duplicated and returned as many time as specified.
EXPR is an expression that expresses the data to be searched and must satisfy the following rules.
You can use comparison operators. The comparison operators you can use are: ==, !=, >=, >, <, <=
The string to be searched must be enclosed in a pair of double quotes (" ") and is case insensitive.
You can provide a combination of the logical operators and, or, not, and a pair of parentheses (()).
This searches all tables unless you specify a table.
If there is a table or index specified more than once, it is returned as many times as it is duplicated.
EXPR recognizes the subquery enclosed in a pair of square brackets([]) in the expression. This runs the subquery first before running an index search and then searches all terms to be returned in the results of the subquery. The more search targets returned by the subquery, the slower the index search speed. We recommend that you use the 'fields' command in a subquery to retrieve only the fields that you really need.
range() and iprange() functions are exclusive to EXPR.
range() function returns the values that fall within a specified range in the table index.
range(MIN_INT, MAX_INT)
MIN_INT
Starting index value. This value is include in the range.
MAX_INT
Ending index value. This value is include in the range.
iprange() function returns IP addresses that fall within a specified IPv4 or IPv6 address range in the table index.
iprange(START_IP_EXPR, END_IP_EXPR)
START_IP_EXPR
Expression to return the starting IP address of the IP address range. This ip address is included in the range.
END_IP_EXPR
Expression to return the ending IP address of the IP address range. This ip address is included in the range.
Optional Parameter
duration=INT{mon|w|d|h|m|s}
Time range to search the previous data based on the current time. You can specify time in units of mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, 10s refers to "the last 10 seconds" based on the current time. This option cannot be used with from and to.
from=yyyyMMddHHmmss
Start date and time of the period to search in the form of yyyyMMddHHmmss. The time period for the search includes the specified time point. If you provide only the first part, the remaining digits are recognized as 0. For example, if you provide 20130605, it is recognized as 20130605000000 (June 5, 2013, 00:00:00). This option cannot be used with duration.
to=yyyyMMddHHmmss
Specify the date and time to end the search in the form of yyyyMMddHHmmss. The time period for the search does NOT include the specified time point. The input format is the same as from. This option cannot be used with duration.
limit=INT
Maximum number of search results (default: unlimited).
offset=INT
Number of search results to skip (default: 0).
order={desc|asc}
Search order of the index (default: desc)
desc: Searches from the most recent data to the oldest ones.
asc: Searches from the oldest data to the most recent ones.
tt=BOOL
Boolean option to use the search term tokenizer (default: f).
t: Searches the string by splitting it into tokenizers for each index.
f: NOT use the search tokenizer
When you use the tt option, the string wildcard (*) in EXPR can only be placed at the beginning or end of the string. For example, you can enter "*asp", "asp*", and "*asp*" in the EXPR, but not "a*sp". Tokens are separated by the and logical operator to reconstruct the query statement. For example, the query statement fulltext tt=t dst == "10.10.130.235" is reconstructed as fulltext dst == "10" and dst == "10" and dst == "130" and dst == "235".
If you do not use 'duration', 'from' or 'to', all logs are searched.
Usage
Search for logs dated June 5, 2013 including "1.2.3.4" from the table.
fulltext from=20130605 to=20130606 "1.2.3.4"
Search for all web logs including "cmdshell" from the iis table.
fulltext "cmdshell" from iis
Search for all web logs including "MSIE" or "Firefox" strings while including the word "game" from the "iis" table.
fulltext "game" and ("MSIE" or "Firefox") from iis
Search for web logs including numbers in the range of 400 to 500 from the iis table.
fulltext range(400, 500) from iis
Search for IP addresses that fall within the range from 192.0.0.1 to 192.0.0.255 in the tables with the name pattern *.*SSLVPN.
fulltext iprange("192.0.0.1", "192.0.0.255") from *.*SSLVPN
Search for the IP set of the blacklist DB from the iis table.
fulltext [dbquery black select ip from ip_blacklist] from iis
Search for full text for a set of tables where the parser of the table is openssh.
fulltext "term" from meta("parser==openssh")
Search for full text for the next 20 fidx index data after skipping the first 5 index data.
 fulltext offset=5 limit=20 "*" from iis.fidx
Split the "1.2.3.4" string using the tokenizer for the fidx index and match them against the fidx index from the iis table
fulltext tt=t "1.2.3.4" from iis.fidx
json
Generates the data source using the JSON string. Typically, this command is used to test the operation of the query command that follows.
Syntax
json JSON_DATA
Required Parameter
JSON_DATA
JSON string enclosed in a pair of double quotes (" "), or an expression that returns a JSON formatted string. If the JSON string has double quotes ("), it must be escaped with a backslash like this: (").
Usage
Generate a log with “a” => 8, “b” => "miles” key-value pairs.
json "{ 'a': 8, 'b':'miles' }"
Generate the “a” => 8, “b” => "miles" log and “a” => 2, “b” => "cats" log.
json "[{ 'a': 8, 'b':'miles' }, { 'a': 2, 'b':'cats' }]"
jsonfile
Loads data in a new line delimited JSON file. The keys are used as field names, and the values are used as field values.
Syntax
jsonfile [OPTIONS] PATH
Required Parameter
PATH
Path to the file from which you want to load the data. If you use a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once. To load the file, the Logpresso daemon must have the read permission to the file.
Optional Parameter
limit=INT
Maximum number of JSON entries to load (default: unlimited). The command distinguishes records using newline characters (CRLF or LF).
offset=INT
Number of records to skip (default: 0).
overlay=BOOL
Output option for JSON source data (default: f).
t: Outputs the parsed data to the fields, and the JSON original data to the line field
f: outputs only the parsed data to the fields
Usage
Read the /opt/logpresso/wp-nginx.json file.
 # Download: https://raw.githubusercontent.com/logpresso/dataset/main/wp-nginx.json
 | jsonfile /opt/logpresso/wp-nginx.json
Read 20 records after skipping the first line of /opt/logpresso/wp-nginx.json file.
jsonfile offset=1 limit=20 /opt/logpresso/wp-nginx.json
Read the /opt/logpresso/wp-nginx.json and import the JSON original data to the line field.
jsonfile overlay=t /opt/logpresso/wp-nginx.json
load
Loads the saved query results.
Syntax
load GUID
Required Parameter
GUID
GUID assigned to the saved query results
Description
There is no command to load GUID information, so there is no case where the user directly executes load command (ENT, STD). When you click an item name stored in Query > Load > Saved Results, this command is executed in Query > Query and returns the saved query result.
logger
Outputs the logs collected by the collector in real time for a specified amount of time. Administrative privileges are required to execute this command.
Syntax
logger window=INT{y|mon|w|d|h|m|s} NODE\LOGGER[, ...]
Required Parameter
window=INT{y|mon|w|d|h|m|s}
Period of time for which to receive data in real time from the time the query is executed. You can specify the time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, 10s refers to "the next 10 seconds" from the time the query is executed.
NAMESPACE\LOGGER[, ...]
Logical path to the log collector that receives data in real time. Use comma (,) as a separator to specify multiple log collectors. Using a wildcard (*) in LOGGER, you can receive logs from all log collectors containing specific string patterns in the name at once.
You can see the NAMESPACE in the web interface.
(ENT, STD) You can see it on the Device column under LOG SOURCE > All.
(SNR) You can see it in the local or on the Identifier under System > Sentry management > Sentry list.
You can see the name of the LOGGER in the web interface.
(ENT, STD) You can see it in the Name column under LOG SOURCE > All.
Usage
Receive logs for 10 seconds from local\sample1 and local\sample2 log collectors.
logger window=10s local\sample1, local\sample2
pcapfile
Loads packets from a PCAP file.
Syntax
pcapfile FILE_PATH
Required Parameter
FILE_PATH
Path to the file from which you want to load the data. If you use a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once. To load the file, the Logpresso daemon must have the read permission to the file.
Description
This returns the packet binary to the payload field. This command is used to load the PCAP file and then pass it to decodedhcp, decodedns, decodehttp, decodesflow, pcapdecode and the like, which are commands for processing packets.
remote
Executes queries on the remote federation node. If the node fails to connect, the query fails.
Syntax
remote NODE [SUBQUERY]
Required Parameter
NODE
The name of the target node on which to execute the query. Provide a federation node identifier after confirming its name from the query results of system nodes.
[SUBQUERY]
Subquery command enclosed in a pair of square brackets ([]).
Usage
Execute the system tables query on the n1 node
remote n1 [system tables]
result
Loads the query result being executed in the current session.
Syntax
result [offset=INT] QUERY_ID
Required Parameter
QUERY_ID
ID of the query to load the result. You can see the query ID using system queries.
Optional Parameter
offset=INT
Number of records to skip (default: 0).
Usage
Load query result of the query #616.
result 616
Load query results of the query #616 after skipping 10 of them.
result offset=10 616
stream
Either receives output from the specified stream or forwards input data to the specified stream. Administrative privileges are required to execute this command.
Syntax
stream [forward=BOOL] [window=INT{y|mon|w|d|h|m|s}] STREAM, ...
Required Parameter
STREAM, ...
Name of the stream. Use comma (,) as a separator to specify multiple log streams. You can use a wildcard (*) in the stream name. If you use a wild card, it receives the output from all streams matching a specific string pattern in stream name at once.
Optional Parameter
forward=BOOL
Option to receive output from or forward input to the specified stream specified by STREAM, ... (default: f).
t: Forwards the input to the stream specified by STREAM, Use this option only when you explicitly enable the streaming feature. This option cannot be used when the window option is specified.
f: Receives the input from the stream specified by STREAM,
window=INT{y|mon|w|d|h|m|s}
Amount of time to receive data in real time from the time the query is executed. You can specify time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). When the unit is y, only 1y is allowed. For example, 10s refers to "the next 10 seconds" from the time the query was executed. This option cannot be used when forward=t.
Usage
Receive the outputs of sample1 and sample2 stream queries in real time for 10 seconds
stream window=10s sample1, sample2
Pass 100 records from the test table to stream sample1 and sample2 as input.
table limit=100 test | stream forward=t sample1, sample2
table
Retrieves the data stored in the table.
Syntax
table [OPTIONS] TABLE[, ...]

table [OPTIONS] meta("KEY_VALUE_EXPR"[, "TABLE", ...])
Required Parameter
TABLE, ...
List of tables, separated by a comma (,).
If you put a question mark (?) after the table name, no error occurs even if the table does not exist. For example, the table test query fails if test table does not exist. But if you execute the query table test?, the query returns an empty result without an error.
You can use a wildcard (*) in the table name. For example, if you execute the query command table sys_*, all tables starting with sys_ are retrieved. Tables that you do not have read permissions for are excluded from the search. After executing a query, you can see the table name in the _table field.
meta("KEY_VALUE_EXPR"[, "TABLE", ...])
Metadata of the table to look up. The meta() function returns tables that match attributes specified by the KEY_VALUE_EXPR option.
KEY_VALUE_EXPR
Comparison expression in the form of "KEY == VALUE" or "KEY != VALUE". You can use it with logical operators such as and or or, or with the not unary negation operator.
KEY
Key name of the table metadata
VALUE
Value of the table metadata (a wildcard pattern can be used)
["TABLE", "TABLE", ...]
Table name of the table with names containing specific string patterns. If you don't specify the table, the command attempts to execute a metadata conditional expression on every table.
For ENT and STD, you can specify table metadata in TABLE > (Select a table) [General]. The metadata key for parser settings is logparser.
Optional Parameter
If you do not use duration, from or to, all logs are searched.
duration=INT{mon|w|d|h|m|s}
Time range to search the previous data based on the current time. You can specify the time in units of mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, 10s refers to "the last 10 seconds" based on the time the query is executed. This option cannot be used with from, to or window.
from=yyyyMMddHHmmss
Start date and time of the search period in the form of yyyyMMddHHmmss. The time period for the search includes the specified time point. If you provide only the first part, the command recognizes the remaining digits as 0. For example, if you provide 20130605, the command recognizes it as 20130605000000 (June 5, 2013, 00:00:00). This option can be used with to, but cannot be used with duration and window.
to=yyyyMMddHHmmss
End date and time of the search period in the form of yyyyMMddHHmmss. The time period for the search does not include the specified time point. The input format is the same as from. This option can be used with from, but cannot be used with duration and window.
window=INT{y|mon|w|d|h|m|s}
Period of time for which to receive data in real time from the time the query is executed. You can specify the time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). When the unit is y, only 1y is allowed. For example, 10s refers to "the next 10 seconds" from the time the query was executed. This option cannot be used with duration, from or to.
limit=INT
Maximum number of records to load (default: unlimited).
offset=INT
Number of records to skip (default: 0).
order=STR
Sorting order of the records (default: desc).
asc: Sorts in ascending order, the oldest at the top.
desc: Sortes in descending order, the latest records at the top.
Usage
Read the last 100 logs from the sys_cpu_logs table
table limit=100 sys_cpu_logs
Read logs for the last 10 minutes from the sys_cpu_logs table.
table duration=10m sys_cpu_logs
Read all logs corresponding to the date of June 5, 2013, from the sys_cpu_logs table.
table from=20130605 to=20130606 sys_cpu_logs
Read all logs from the sys_cpu_logs and sys_mem_logs tables in sequence.
table sys_cpu_logs, sys_mem_logs
Read data from tables which have parser metadata with the value of openssh.
table meta("parser==openssh")
textfile
Loads the data from the text file and returns to the line field.
Syntax
textfile [OPTIONS] PATH
Required Parameter
PATH
Path to the file from which to load the data. If you use a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once. To load a file, the Logpresso daemon must have the read permission to the file.
If the extension of the file name to be loaded is .gz, Logpresso decompresses and loads the file automatically.
Optional Parameter
You can omit options when creating a query. The omitted option is set to the default value.
brex="REGEX"
Regular expression to match the starting row of a record when the record consists of multiple lines. The lines are merged into a single record until a line matching the regular expression appears. If you omit this option, the starting line is recognized based on the newline character (CRLF or LF).
To match the last line of the record, use the erex option.
cs=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
df="TIME_FMT"
Timestamp format. For example, you may provide yyyy-MM-dd HH:mm:ss.SSS. This option is used with the dp option.
dp="REGEX"
Regular expression for date extraction. This extracts the timestamp string by a specified regular expression, then parses it into the timestamp format of the df option to assign the time type value on the _time field. You can use this with the df option.
If you omit this option, the time at which the data is loaded is recorded in the _time field.
erex="REGEX"
Regular expression to be used to match the last line of the record if a record consists of multiple lines. The lines are merged into a single record until a line matching the regular expression appears. If you omit this option, the last line is recognized based on the newline character (CRLF or LF).
To match the starting line of the record, use the brex option.
limit=INT
Maximum number of records to load (default: unlimited).
offset=INT
Number of records to skip (default: 0).
Usage
Read the /var/log/secure log file.
textfile /var/log/secure
Read the iis.txt file encoded with euc-kr.
textfile cs=euc-kr iis.txt
Read all the /var/log/syslog.*.gz file.
textfile /var/log/syslog.*.gz
xmlfile
Loads data from the xml file. This command can detect XML file encoding by analyzing the byte order mark (BOM). If you use a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once.
Syntax
xmlfile [OPTIONS] PATH
Required Parameter
FILE_PATH
Path to the file from which to load the data. Using a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once. For example, if you enter report-*.xml in PATH, you can load all files, such as "report-2022-01-01.xml", "report-2022-01-02.xml" at once. To load a file, the Logpresso daemon must have the read permission to the file.
Optional Parameter
You can omit options when creating a query. The value for the unspecified option is set to the default value.
cs=CHARSET
The encoding of the file (default: utf-8). Nothing specified, this command detects XML file encoding by analyzing BOM. For the encoding name, use the preferred MIME name or aliases registered in the following document: https://www.iana.org/assignments/character-sets/character-sets.xhtml
xpath=EXPR
The XPath (XML path language) expression to select the XML nodes. For XPath, refer to https://www.w3.org/TR/xpath-31/.
Usage
Read the report_kr.xml file encoded in euc-kr.
xmlfile cs=euc-kr report_kr.xml
Retrieve the title node information from the first book subnode of the bookstore node in the books.xml file.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/books.xml
 | xmlfile xpath="/bookstore/book[1]/title" books.xml
zipfile
Loads data from a text file compressed with ZIP. You can use wildcards(*) in the ZIP file path and ZIP entry path.
Syntax
zipfile [limit=INT] [offset=INT] ZIP_PATH FILE_IN_ZIP
Required Parameter
ZIP_PATH
Path of the zip file. If you use a wildcard (*) in the file name, you can retrieve all the files containing a specific string pattern in the file name at once. The Logpresso daemon must have the read permission to the file.
FILE_IN_ZIP
Zip entry path of the text file from which to load the data. If you use a wildcard (*) in the file name, you can load all files containing a specific string pattern in the file name at once.
Optional Parameter
limit=INT
Maximum number of records to load (default: unlimited).
offset=INT
Number of records to skip (default: 0).
Usage
Read the iis.txt file among text files compressed in the /opt/logpresso/imported.zip file.
zipfile /opt/logpresso/imported.zip iis.txt
Read all txt files compressed in the /opt/logpresso/testdata.zip file.
zipfile /opt/logpresso/testdata.zip *.txt
Read all txt files compressed in all ZIP files in the /opt/logpresso path.
zipfile /opt/logpresso/*.zip *.txt
Data Processing
alertmsg
Converts the alert log to the message in the locale (language) specified by the user.
Syntax
alertmsg [locale=LOCALE_CODE]
Optional Parameter
locale=LOCALE_CODE
The locale (language) to be applied to the alert message in the user session (default: en). The languages currently supported are English (en) and Korean (ko).
Description
After running the alretmsg, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	category
	String
	Category of the alert

	description
	String
	Description of the alert

	message
	String
	Alert message

	name
	String
	Alert title

Usage
Convert locale (language) of the alert messages to English.
table sys_alerts | alertmsg
Convert locale (language) of the alert messages to Korean.
table sys_alerts | alertmsg locale=ko
auditmsg
Converts the audit log to the message in the locale (language) specified by the user.
Syntax
auditmsg [locale=LOCALE_CODE]
Optional Parameter
locale=LOCALE_CODE
The locale (language) to be applied to the audit log message in the user session (default: en). The languages currently supported are en and ko.
Usage
Convert language of the audit log messages to Korean.
table sys_audit_logs | auditmsg locale=ko
boxplot
Calculates the minimum, maximum, and quartile required to draw a box plot.
Syntax
boxplot EXPR [by GRP_FIELD, ...]
Required Parameter
EXPR
An expression that is subject to the statistics.
Optional Parameter
by GRP_FIELD, ...
Grouping fields in the aggregation, separated by a comma (,). This option MUST follow after the EXPR option.
Description
The output fields are as follows:
count: Total number of records belonging to GRP_FIELD. Without GRP_FIELD, count the total number of records.
GRP_FIELD: Value of group field entered in the by clause
iqr1: First quartile for each group. The median value of the lowest 50% based on the median value, the lowest 25% of the total data
iqr2: Second quartile for each group (median value). The most central value when the data is sorted in order
iqr3: Third quartile for each group. The median value of the highest 50% based on the median value, the highest 25% of the total data
max: Maximum value for each group
min: Minimum value for each group
Usage
Five-number summary for overall CPU load.
table sys_cpu_logs
 | eval usage = kernel + user
 | boxplot usage
Five-number summary for CPU load by date.
table sys_cpu_logs
 | eval day = string(_time, "yyyy-MM-dd")
 | eval usage = kernel + user
 | boxplot usage by day
bypass
Bypasses all input values as they are. This command is used to create a field index for all input fields or to pass all results in stream queries as they are.
Syntax
bypass
cube
Automatically performs all possible aggregations of the specified fields. The command returns an aggregated result containing all the possible combinations for the selected fields if multiple fields are specified in the by clause.
Syntax
cube [OPTIONS] AGGR_FUNC [as ALIAS], ... [by GRP_FIELD, ...]
Required Parameter
AGGR_FUNC [as ALIAS], ...
Pair of a aggretgational function (AGGR_FUNC) and optional alias (ALIAS) to be displayed as a field name. If no alias specified, the command uses the function name, such as avg(), as the field name. It is recommended that you specify an ALIAS.
Optional Parameter
label=FIELD
Label to be given to the aggregate value (default: null).
parallel=BOOL
Option to enable parallel processing (default: f).
t: Enables processing the query in parallel. The processing speed increases but the order of data is not guaranteed. Avoid using this option in query commands where the order of the data matters.
f: Disables processing the query in parallel.
by GRP_FIELD, ...
Grouping fields with by directive, separated by a comma(,). This option MUST follow after the AGGR_FUNC [as ALIAS] option.
Usage
Retrieve records from web server log table web_access to calculate subtotals and grand totals of the count for all permutations of the date field and the status field.
table web_access
 | eval date=string(date, "yyyy-MM-dd")
 | cube label="TOTAL_COUNT" count by date, status
Calculate the aggregation of the count and size for all combinations generated by the values of the action and status fields.
cube label=TOTAL count, sum(size) as size by action, status
curvefit
Runs a linear regression analysis for the input using the Least Mean Square (LMS).
Syntax
curvefit [degree=INT] INDEPENDENT_FIELD, DEPENDENT_FIELD
Required Parameter
INDEPENDENT_FIELD
Field as the independent variable. The value of the independent variable must be numeric.
DEPENDENT_FIELD
Field as the dependent variable. The value of the dependent variable must be numeric.
Optional Parameter
degree=INT
Degree of the polynomial function that approximates the input value (default: 3).
Description
This runs a linear regression analysis using the least mean square for up to 10,000 input record values. This assigns the independent variable field value to the _x field and the predicted value to the _p field. It ignores records after 10,000.
Usage
Approximate the CPU usage rate for the past 1 hour with a tenth polynomial function.
table duration=1h sys_cpu_logs
| eval x = datediff(dateadd(now(), "hour", -1), _time, "sec")
| eval total = kernel + user
| curvefit degree=10 x, total
decodedhcp
Decodes the DHCP packets.
Syntax
decodedhcp
Description
The output fields are as follows:
client_ip: IP address of the DHCP client. The address of any client which an IP address is not assigned is 0.0.0.0.
client_mac: MAC address of the DHCP client.
fingerprint: DHCP fingerprint if present. See the list of DHCP and BOOTP parameters managed by IANA for the meaning of each number: https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
gateway_ip: Gateway IP address specified by the DHCP relay agent when communicating with the DHCP server on behalf of the client. Typically, the IP address at which the DHCP server can communicate with the DHCP agent.
next_server_ip: IP address of the secondary DHCP server
options: Field that displays the DHCP option numbers as an array
tx_id: DHCP transaction identifier
your_ip: IP address assigned by the DHCP server to the client
Usage
Decode DHCP packets from a pcap file.
pcapfile /opt/logpresso/pcap/dhcp.pcap | decodedhcp
decodedns
Decodes the DNS request and response packets.
Syntax
decodedns
Description
The output fields are as follows:
additionals: Other additional records (array)
answers: Answer resource records from the DNS server (array)
authorities: Information of authoritative DNS servers (array)
bytes: Size (integer) of the DNS payload
direction: Direction of the transaction (string)
c->s: Request from the client
s->c: Response from the server
domain: Domain address to be queried (string)
dst_ip: Destination IP address of the DNS transaction (IP address)
dst_port: Destination port of the DNS transaction (integer)
flags: DNS header flag. Refer to: https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-12
ip: IP address connected to the domain address (IP address)
src_ip: Source IP address of the DNS transaction (IP address)
src_port: Source port of the DNS transaction (integer)
status: Query result. If there is an error, an error message is displayed.
FORMAT_ERROR: The DNS server could not interpret the request.
NAME_ERROR: The domain name in the request does not exist.
NO_ERROR: No error.
NOT_IMPLEMENTED: The DNS server does not support the type of request.
REFUSED: The DNS server refused the request.
SERVER_FAILURE: The DNS server was unable to process the request due to an internal server error.
txid: DNS transaction ID (hexadecimal string)
type: DNS record type (strings such as A, AAAA, CNAME, MX, NS, PTR, SOA, SRV, TXT). Refer to: https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4
Usage
Decode DNS packets from a pcap file.
pcapfile /opt/logpresso/pcap/abnormal_traffic.pcap | decodedns
decodehttp
Decodes the HTTP header in the packets.
Syntax
decodehttp
Description
The output fields are as follows:
dst_ip: Destination IP address (IP address)
dst_port: Destination port (integer)
host: Name of the web server in the FQDN (Fully Qualified Domain Name) format (string)
method: HTTP method (string)
path: Resource path (string). Typically, the URI (Uniform Resource Identifier). Refer to: https://tools.ietf.org/html/rfc3986
rcvd: Data received by the client from the server (bytes)
req_time1: Time the HTTP request is initiated (Epoch timestamp)
req_time2: Time the HTTP request is completed (Epoch timestamp)
res_time1: Time the HTTP response is initiated (Epoch timestamp)
res_time2: Time the HTTP response is completed (Epoch timestamp)
sent: Data sent by the client to the server (bytes)
src_ip: Source IP address (IP address type)
src_port: Source port (integer)
status: HTTP response code of the server (ingeter). Refer to: https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
Usage
Decode HTTP packets from a pcap file.
pcapfile /opt/logpresso/pcap/abnormal_traffic.pcap | decodehttp
decodesflow
Decodes the sFlow packets.
Syntax
decodesflow
Description
The output fields are as follows:
agent_addr: IP address of sFlow agent
agent_id: Agent identifier
counters: When sample_type is counters, the following map-type information is output.
admin_status: Whether the administrator port is enabled (true, false)
if_direction(0: unknown, 1: Full-duplex, 2: Half-duplex, 3: Receive, 4: Send)
if_index: Interface identifier
if_speed: Connection link speed in bps
if_type: Ethernet is 6, Refer to the interface type standard number assigned by IANA: "IANAifType ::= TEXTUAL-CONVENTION" and "SYNTAX INTEGER" sections in https://ietf.org/assignments/ianaiftype-mib/ianaiftype-mib
in_bcast_pkts: Number of broadcast packets received
in_discards: Number of discarded packets received
in_errors: Number of packets with errors received
in_mcast_pkts: Number of multicast packets received
in_octets: Total bytes received (bytes)
in_ucast_pkts: Number of unicast packets received
in_unknown_protos: Number of packets whose protocols are unknown among the received packets
oper_status: Whether the actual link is enabled (true, false)
out_bcast_pkts: Number of broadcast packets sent
out_discards: Number of discarded packets to be sent
out_errors: Number of packets with errors among the packets to be sent
out_mcast_pkts: Number of multicast packets sent
out_octets: Bytes sent
out_ucast_pkts: Number of unicast packets sent
promisc_mode: Whether promiscuous mode is enabled (true, false)
drops: Number of packets lost due to lack of performance. This outputs information when sample_type is flow.
dst_ip: Destination IP address. Typically, the address of the sFlow collenction server.
dst_port: Destination port number
flow: A packet randomly sampled according to sampling_rate
flow_seq: Increases by 1 each time a sample created for each src_id
flows: Outputs the flow data information sampled when sample_type is flow.
counters: Inerface counters that transmit at regular intervals
frame_length: Length in byte of the packet before sampling
header: Ethernet header octet byte stream
protocol: Connection layer protocol (e.g., ethernet)
stripped: Number of octets removed from the packet before extracting the data link layer header octets
input_if_index: Outputs the interface identifier information received when sample_type is flow
output_if_index: Outputs the interface identifier information sent when sample_type is flow
protocol: Transport layer protocol. udp only.
sample_pool: Number of sources to be sampled. This outputs information when sample_type is flow.
sample_type: Type of sampling
sampling_rate: Sampling rate. One from the specified number of packets is extracted. This outputs information when sample_type is flow.
src_id: Interface identification number
src_id_type: Interface type defined in RFC 2613 (0: ifIndex, 1: smonVlanDataSource, 2: entPhysicalEntry). Refer to 3.1.1 DataSource Objects in RFC 2613: https://tools.ietf.org/html/rfc2613
src_ip: Source IP address. Typically, the address of the sFlow agent.
src_port: Source port number
uptime: Uptime after the agetn starts
ver: sflow version. Only version 5 supported.
Usage
Decode sFlow packets from sflow.pcap file.
pcapfile /opt/logpresso/sonar/sflow.cap | decodesflow
eval
Evaluates the expression on the right and then assigns a new field or replaces the old field value. You can enter any combination of expressions that can be evaluated to value on the right side.
Syntax
eval FIELD=EXPR, ...
Required Parameter
FIELD=EXPR, ...
Statement to assign the value obtained by evaluating the expression to a new or old field. You can enter any combination of expressions that can be evaluated to value on the right side. Use commas (,) as a separators to specify multiple pairs of assignments. If there are multiple pairs of FIELD=EXPR, the command evaluates them in order from the left.
Usage
Evaluate the int("100") function to convert the string to an integer and then assign it to the num field.
json "{}" | eval num = int("100")
Call the typeof() to assign the type of a specific value to the type1, type2 field.
json "{}" | eval type1 = typeof("string"), type2 = typeof(100)
Sum up the field values
json "{}" | eval sent = 100, rcvd = 200, total = sent + rcvd
Assign the results of executing the `concat("hello", ", world")` function to the msg field
json "{}" | eval msg = concat("hello", ", world")
evalc
Evaluates the expression on the right, and then assigns a new query parameter or replaces the value of an old query parameter.
Syntax
evalc VAR_NAME=EXPR
Required Parameter
VAR=EXPR
Query parameter. Assign the parameter name on the left side and any combination of expressions that can be evaluated as a value to the right. The value obtained by evaluating the expression is assigned to the query parameter. Unlike the set command, it evaluates all the data at the time the query is executed.
Usage
Set the alert query parameter to true if count exceeds the threshold
evalc alert = if(count > 100000, true, $("alert"))
All input data are assigned after being evaluated with the right side expression, so if its count does not exceed the threshold, use the $() function to re-assign the existing variable value as it is.
explode
Expands the values of an array field into separated rows. This command is generally used to convert an array (horizontal) into a column (vertical). It preserves the input row if the specified field does not exist, is not an array, or is null.
Syntax
explode FIELD
Required Parameter
FIELD
Name of the field containing the array.
Usage
Calculate IP statistics
json "[{line: '10.0.0.1 10.0.0.2'},{line:'10.0.0.2 10.0.0.3'}]"
| eval ip = split(line, " ")
| explode ip
| stats count by ip
json: Generates the data source using "{line: '10.0.0.1 10.0.0.2'},{line:'10.0.0.2 10.0.0.3'}".
eval: Assigns the value in form of array that evaluated the `split(line, " ")` function to the new ip field.
explode: Explodes the array in the ip field in unit of array component, expanding the two rows into four.
stats: Calculates the count of the number of rows in ip field.
fields
Either selects only specific fields or selectively excludes only specific fields.
Syntax
fields [-] FIELD, ...
Required Parameter
FIELD, ...
List of fields. Use comma (,) as a separator.
Optional Parameter
-
Exclude the fields after the minus symbol (-), these fields are excluded from the output. If you omit this sign, only those fields are selected.
Usage
Select only the src_ip and action fields.
fields src_ip, action
Remove only the line field
fields – line
flowsearch
Loads a flow rule consisting of the subnet of the IP network, ports, and protocol conditions defined by a subquery, compares them with input records, and assigns all searched flow identifiers as arrays in the _flow field.
Syntax
flowsearch [SUBQUERY]
Required Parameter
[SUBQUERY]
Subquery to define the flow rules, enclosed in a pair of square brackets ([]).
Description
You can load the flow rule from any location, including a file, table, remote RDBMS, and the like, and the field configuration and type must match to be recognized as a valid rule. The number of flow rules to be applied to a subquery cannot exceed 10,000. From the 10,001st rule, they are ignored.
If the subquery fails, the cause of the error is output in the _flowsearch_error field. If you add an exception handling command that checks for the existence of the _flowsearch_error field value after the flowsearch command, unintended errors or malfunctions can be prevented.
Definition of input fields
	Field
	Type
	Required
	Description

	src_ip
	IP address
	Yes
	Source IP address

	src_port
	Integer
	No (null allowed)
	Source port number

	dst_ip
	IP address
	Yes
	Destination IP address

	dst_port
	Integer
	No (null allowed)
	Destination port number

	protocol
	String
	No (null allowed)
	Protocol

If the field type in the input record does not match, or if required fields are missing, the command outputs the record as it is without checking the flow rule.
Definition of flow rule fields
	Field
	Type
	Required
	Description

	src_ip
	IP address
	Yes
	Source IP address

	src_cidr
	Integer
	Yes
	Source netmask (0-32)

	src_port
	Integer
	No (null allowed)
	Source port number (0-65535)

	dst_ip
	IP address
	Yes
	Destination IP address

	dst_cidr
	Integer
	Yes
	Destination netmask (0-32)

	dst_port
	Integer
	No (null allowed)
	Destination port number (0-65535)

	protocol
	String
	No (null allowed)
	Protocol (TCP, UDP, ICMP, ...)

	flow
	Arbitrary
	Yes
	Flow identifier

Each time a record is provided into the flowsearch command, it compares the 5-tuple value input with the flow rule and assigns the matching flow identifier as a list in the _flow field.
Both the ip and cidr of the flow rule are required fields, but if the src_ip of the rule is 0.0.0.0 and the src_cidr is 0, it is true for all source IP addresses. So set 0.0.0.0/0 for the rule to allow all values for the source or destination.
For example, for the flow rule below, if the input record is src_ip=106.75.11.63, src_port=57776, dst_ip=106.246.20.67, dst_port=80, and protocol=TCP, then it matches with the flow 2, so the _flow=["flow2"] field is added to the output record.
Examples of flow rules
	src_ip
	src_cidr
	src_port
	dst_ip
	dst_cidr
	dst_port
	protocol
	flow

	211.36.133.0
	24
	null
	106.246.20.67
	32
	80
	TCP
	flow1

	106.75.11.0
	24
	null
	106.246.20.67
	32
	null
	TCP
	flow2

Usage
json "{}"
| eval src_ip=ip("106.75.11.63"),
 src_port=57776
| eval dst_ip=ip("106.246.20.67"),
 dst_port=80, protocol="TCP"
| # Initiating the flowsearch command that defines the flow search rule
| flowsearch [
 union [
 json "{}"
 | eval src_ip=ip("211.36.133.0"),
 dst_ip=ip("106.246.20.67"),
 flow="flow1"
]
 | union [
 json "{}"
 | eval src_ip=ip("106.75.11.0"),
 dst_ip=ip("106.246.20.67"),
 flow="flow2"
]
 | eval src_cidr=24, dst_cidr=32
]
| fields src_ip, src_port, dst_ip, dst_port, protocol, _flow
groovy
Runs a script written in Groovy.
Syntax
groovy CLASS_NAME
Required Parameter
CLASS_NAME
Name of the class you want to execute.
Description
Groovy is a dynamic object-oriented language developed with influence from languages such as Python and Ruby and runs on the JVM. The script file must meet the following constraints to be executed:
You need to specify the script file name in the following format: CLASS_NAME.groovy
The script files SHOULD be in data/araqne-logdb-groovy/query_scripts in the directory where Logpresso is installed.
You need to import and use the package provided by Logpresso. Use the following packages as needed.
groovy.transform.CompileStatic
org.araqne.logdb.groovy.GroovyQueryScript (required)
org.araqne.logdb.QueryStopReason
org.araqne.logdb.Row (required)
org.araqne.logdb.RowBatch
org.araqne.logdb.RowPipe
To improve the performance of Groovy scripts, refer to the following:
Avoid using string processing methods as much as possible. As the number of string objects increases, garbage collection occurs more frequently in the JVM.
Avoid using the split() and tokenize() methods as much as possible.
split() is very slow because it uses a regular expression internally.
Use indexOf() or substring() instead. Although the code is longer, it provides better processing performance.
Avoid using Pattern.compile(). Reusing the Matcher instance by calling Matcher.reset() provides better performance.
DO NOT use exceptions for the normal flow of control
If exceptions occur frequently, processing performance becomes significantly slower.
If possible, handle possible error cases through conditional testing.
Usage
Save the following script as ToAscii.groovy in data/araqne-logdb-groovy/query_scripts in the directory where Logpresso is installed.
import groovy.transform.CompileStatic;
import org.araqne.logdb.Row;
import org.araqne.logdb.groovy.GroovyQueryScript;

@CompileStatic(groovy.transform.TypeCheckingMode.SKIP)
class ToAscii extends GroovyQueryScript {
 def void onRow(Row row) {
 byte[] payload = row.get('payload')

 char[] chars = new char[payload.length];
 for (int i = 0; i < payload.length; i++) {
 char c = (char) payload[i]
 if (c < 32 || c > 126)
 c = '.'
 chars[i] = c
 }

 row.put('text', new String(chars))
 pipe.onRow(row)
 }
}
This script encodes the 32nd to 127th characters in ASCII format among the binary values decoded in the PCAP file and assigned on the payload field.
pcapfile /opt/logpresso/sonar/http-2.pcap | pcapdecode | groovy ToAscii
limit
Constrain the number of rows returned and then cancels the query.
Syntax
limit [INT_OFFSET] INT_MAX
Required Parameter
INT_MAX
Maximum number of records from the query results. The query is canceled when the specified number of query inputs is reached. Note that some commands may not work as intended if the query is canceled.
Optional Parameter
INT_OFFSET
Number of query results to skip (default: 0).
Usage
Return the first 5 rows and then cancel the query.
table sys_cpu_logs | limit 5
The query command above has the same results as the following:
table limit=5 sys_cpu_logs
Ignore the first row and return the following 2 rows and then cancel the query.
table sys_cpu_logs | limit 1 2
The query command above has the same results as the following:
table offset=1 limit=2 sys_cpu_logs
mpsearch
Matches thousands or more keyword patterns simultaneously. When the pattern specified in the subquery is detected in the field subject to be matched, it assigns a list of all detected patterns to the _mp_result field.
Syntax
mpsearch FIELD [SUBQUERY]
Required Parameter
FIELD
Name of field to match multi-patterns.
[SUBQUERY]
Subquery to load the list of keyword patterns to be searched, enclosed in a pair of square brackets ([]).
Description
The output of the subquery must contain the expr, expr2, and rule string fields.
expr (required): Write it by combining strings into a boolean expression. The command quickly detects the corresponding string from the values of the strings of the field to be scanned and then checks whether it matches the expression.
expr2 (optional): If the boolean expression in the expr field is true, this selectively provides an opportunity to match further using the values in other fields.
rule (required): Provide the pattern identifier or name.
Examples of patterns are as follows:
Examples of pattern
	expr (required)
	expr2 (optional)
	rule (required)

	"addextendedproc" and "xp_cmdshell"
	
	xp_cmdshell

	"REMOTE_ADDR" and ("fputs" or "fwrite")
	path == "lib.php"
	zb now_connect

If only the xp_cmdshell pattern is detected, the value of the _mp_result field is as follows:
[{ "expr": "\"addextendedproc\" and \"xp_cmdshell\"", "rule": "xp_cmdshell" }]
Usage
Match multi-patterns to the signature field by loading the pattern list from the external DB.
mpsearch signature [
 dbquery RULE_DB select rule, expr, expr2 from web_rules
]
order
Sorts the specific fields to be printed out in the specified order, and displays the remaining fields in lexicographical order.
Syntax
order FIELD, ...
Required Parameter
FIELD, ...
Names of fields to be ordered in order, separated by a comma (,). The command sorts the fields that are not listed here in lexicographical order.
Usage
Define the field output order of the sys_cpu_logs table as kernel, idle, user, _time, _table, and _id.
table sys_cpu_logs | order kernel, idle, user, _time, _table, _id
Define the field output order of the sys_cpu_logs table as idle, kernel and then the rest in lexicographical order
table sys_cpu_logs | order idle, kernel
parallel
Processes input data in parallel using a subquery, and then combines the results of subquery and passes them along.
Syntax
parallel core=INT [SUBQUERY]
Required Parameter
[SUBQUERY]
Subquery to be processed in parallel, enclosed in a pair of square brackets ([]).
core=INT
Number of logical cores in the CPU to be used for parallel processing of a subquery
Usage
First, create a data table creation for testing.
json "{}"
| repeat count=5000000
| set a=0 | evalc a=$("a") + 1
| eval b=$("a")
| fields b
| import create=t big_table
Execute the subquery in parallel.
table big_table
| parallel core=4 [eval i=int(b)]
| stats count by b | sort -count
parse
Parses data using a predefined parser or user-defined rule.
Syntax
parse [overlay=BOOL] PARSER

parse [OPTIONS] PARSING_RULE, ...
Required Parameter
PARSER
Predefined parser name. You can see the names of the parsers in the web console.
(STD, ENT) Check the Name in SYSTEM CONFIG > PARSER/TRANSFORMER > Parser
(MAE, SNR) Check the Parser code in Logger > Parser, Normalizer.
This option cannot be used with the field=TARGET_FIELD option.
PARSING_RULE, ...
User-defined rules, separated by a comma (,). The syntax of a parsing rule is "START_ANCHOR*STOP_ANCHOR" as FIELD_NAME:
START_ANCHOR*STOP_ANCHOR: Parse anchors
as FIELD_NAME: Label given as the name of the field
The parse command parses strings according to specified start and stop anchors, and then labels them with FIELD_NAME.
Optional Parameter
overlay=BOOL
Option to control data-overwrite (default: f).
t: Outputs the parsed data and the original data.
f: Outputs the parsed data only.
field=TARGET_FIELD
Field to be parsed in the input data stream (default: line). This option cannot be used with the PARSER argument.
Usage
Parse the logs stored in the ssh_log table using the openssh parser.
table from=20200601 to=20200701 ssh_log | parse openssh
Extract the field by specifying the start and end text from the log (using the following contents by saving it as "sample.txt").
Nov 11 00:00:00 session: Proto:17, Policy:pass, Rule:9000, Type:open, Start_Time:Nov 11 00:00:00, End_Time:-
You can extract the session, proto, policy, rule, and end_time fields from the above source using the command below.
textfile /opt/logpresso/sample.txt
 | parse
 "session:* " as session,
 "Proto:*," as proto,
 "Policy:*," as policy,
 "Rule:*," as rule,
 "Start_Time:*," as start_time,
 "End_Time:*" as end_time
parsecsv
Parses the comma-separated values (CSV) string or tab-separated values (TSV) string.
Syntax
parsecsv [field=TARGET_FIELD] [overlay=BOOL] [strict=BOOL] [tab=BOOL] [FIELD, ...]
Optional Parameter
field=TARGET_FIELD
Field to be parsed in the input data stream (default: line).
overlay=BOOL
Option to control data-overwrite (default: f).
t: Overwrites the input data with the parsed data.
f: Outputs the parsed data only.
strict=BOOL
Option to conform RFC 4180 (default: f).
t: Parses the CSV file by strictly applying the RFC 4180: https://tools.ietf.org/html/rfc4180. It is the same as when you open the CSV file with Excel. This option cannot be used when tab=t.
f: Flexibly parses the CSV file.
tab=BOOL
Option to use a tab character as a separator (default: f).
t: Uses a tab character as a separator. This is useful for processing tab-separated values (TSV) files.
f: Uses a comma (,) as a separator.
Target Object
Target Objects
FIELD, ...
Field names for the parsed fields, separated by a comma (,). This option must be placed last in the expression. If names are not provided, default names are used: column0, column1, ..., columnN in order.
Usage
Parse a comma-separated text
json "{line: '\"foo\",\"bar\"'}" | parsecsv
Parse a comma-separated text to give names name1 and name2 to fields in order from the front.
json "{line: '\"foo\",\"bar\"'}" | parsecsv name1,name2
parsejson
Parses a JSON string.
Syntax
parsejson [field=TARGET_FIELD] [overlay=BOOL]
Optional Parameter
field=TARGET_FIELD
Field to be parsed in the input data stream (default: line).
overlay=BOOL
Option to control data-overwrite (default: f).
t: Outputs both the parsed data and the original data.
f: Outputs the parsed data only.
Usage
Parse the JSON text of the line field.
json "{line: ' {\"foo\": \"bar\"}'}" | parsejson
parsekv
Parses a string consisting of key-value pairs.
Syntax
parsekv [field=TARGET_FIELD] [kvdelim="CHAR"] [overlay=BOOL] [pairdelim="CHAR"]
Optional Parameter
field=TARGET_FIELD
Field to be parsed in the input data stream (default: line).
kvdelim="CHAR"
Character to use as the key-value delimiter (default: =).
overlay=BOOL
Option to control data-overwrite (default: f).
t: Outputs both the parsed data and the original data.
f: Outputs the parsed data only.
pairdelim="CHAR"
Delimiter that separates the key-value pairs(default: space).
Usage
Convert the JSON string in the line field into a key-value pair.
json "{line: 'src=1.2.3.4 src_port=55324 dst=5.6.7.8 dst_port=80'}"
| parsekv kvdelim="=" pairdelim=" "
parsemap
Extracts all the keys from the map to the field.
Syntax
parsemap [overlay=BOOL] field=TARGET_FIELD
Required Parameter
field=TARGET_FIELD
Field to be parsed in the input data stream. The field's value must be a map type. If the value of the target field is null or is not a map type, the original data is passed as is.
Optional Parameter
overlay=BOOL
Option to control data-overwrite (default: f).
t: Outputs both the parsed data and the original data.
f: Outputs the parsed data only.
Usage
Extract all key-value pairs as fields from map data in complex fields
json "{'complex': {'id':100, 'name':'Logpresso'} }" | parsemap field=complex
parsexml
Parses the XML document into a set of complex objects.
Syntax
parsexml [field=TARGET_FIELD] [overlay=BOOL]
Optional Parameter
field=TARGET_FIELD
Field to be parsed in the input data stream (default: line).
overlay=BOOL
Option to control data-overwrite (default: f).
t: Outputs both the parsed data and the original data.
f: Outputs the parsed data only.
Usage
Extract XML nodes that belong to the root XML element into the field.
If the XML node contains only a text node, the command uses the element tag as the name of the field and assigns the text value of the text node to the value of the field.
If the XML node has attributes, the command converts the name-value pair of each XML attribute to the key-value pair of the map, and converts the text value of the text node of the XML element to the value of the _text field.
For example, if you parse the XML in the form of <doc><id>sample</id></doc>, the value of the sample string is assigned to the id field.
If the form of XML is <doc><id>sample</id><name locale="en">Logpresso</name></doc>, two key-value pairs of locale=en and _text=Logpresso are assigned to the name field like {"locale":"en","_text":"Logpresso"}. You can easily extract fields from the map inside a complex object by combining the parsemap command.
json
 "{line: '<doc><id>sample</id><name locale="en">Logpresso</name></doc>'}"
| parsexml
| parsemap field=name overlay=t
pcapdecode
Decodes the packets and outputs layer 4 metadata fields.
Syntax
pcapdecode
Description
After running the pcapdecode command, the output fields are as follows:
	Field
	Type
	Description

	src_mac
	String
	Source MAC address

	dst_mac
	String
	Destination MAC address

	vlan_id
	Integer
	VLAN ID

	protocol
	String
	esp, icmp, tcp, or udp

	src_ip
	IP address
	Source IP address

	src_port
	Integer
	Source port

	dst_ip
	IP address
	Destination IP address

	dst_port
	Integer
	Destination port

	payload
	Binary
	Packet payload

Usage
Download: https://raw.githubusercontent.com/logpresso/dataset/main/pcap/nslookup.pcap
| pcapfile /opt/logpresso/nslookup.pcap | pcapdecode
pcapreplay
Replays previously captured network traffic. Administrative privileges are required to execute this command.
Syntax
pcapreplay device="DEVICE_NAME" [pps=INT]
Required Parameter
device="DEVICE_NAME"
Name of the network device to replay packets among the devices identified by the system pcapdevices command. To specify the interface, specify the name of the device identified as name.
Optional Parameter
pps=INT
Packet replay speed in packets/sec.
Description
For this command to work, a driver such as libpcap or winpcap must be installed, and the Logpresso process must be able to use RAW I/O for the network interface with administrative privileges.
You can use this command by applying it in a way that transmits incoming traffic to the monitor port of the IPS or network traffic analysis device.
To replay the packet data stored in the table in chronological order, you need to apply the order=asc option to the table command to sort the packets in the original chronological order.
Usage
Transmit traffic from the PCAP device enp0s3 at a speed of 1,302,083 pps (about 1 Gbps) after reading the payload field from the record stored in the tapped_traffic table for the last 5 minutes.
table order=asc duration=5m tapped_traffic
| fields payload
| pcapreplay device="enp0s3" pps=1302083
pivot
Executes one or more aggregation on each row or column group.
Syntax
pivot [parallel=BOOL] AGGR_FUNC [as ALIAS], ... [by|rows GRP_FIELD, ...] [for|cols GRP_FIELD, ...]
Required Parameter
AGGR_FUNC [as ALIAS], ...
Pairs of a group function (AGGR_FUNC) and optional alias (ALIAS) as a field name, separated by a comma (,). It is recommended that you specify an ALIAS. If no alias provided, the function name is labeled as the field name, such as count() and sum(sent_pkts).
Optional Requirements
parallel=BOOL
Option to enable parallel processing (default: f).
t: Enables processing the query in parallel. The processing speed increases but the order of data is not guaranteed. Avoid using this option in query commands where the order of the data matters.
f: Disables processing the query in parallel.
by|rows GRP_FIELD, ...
Grouping fields with by or rows directive, separated by a comma(,).
for|cols GRP_FIELD, ...
Grouping fields with for or cols directive, separated by a comma(,).
If the 'by|rows' or 'for|cols' clause is not specified, the entire data that comes from the previous query command is aggregated into one group. There is a side effect that is sorted out based on the group field.
Usage
Return the number of rows.
pivot count
Return the number of rows by each src_ip value.
pivot count by src_ip
Count the number of rows for each protocol field value (e.g., TCP, UDP, ICMP and the like) for the src_ip and dst_ip fields.
pivot count by src_ip, dst_ip for protocol
Count the number of rows (count()) and traffic (sum(bytes)) for each protocol field value (e.g., TCP, UDP, and ICMP) for the src_ip and dst_ip fields.
pivot sum(bytes) as bytes, count rows src_ip, dst_ip cols protocol
prev
Adds the field value of the previous record to the field (e.g., prev_count) with the prefix prev_ to the next input record. This command is often used to capture the change in a data series.
Syntax
prev INPUT_FIELD, ...
Required Parameter
INPUT_FIELD, ...
Fields to track its previous value, separated by a comma (,). The command saves the value of the previous record of the specified fields to the field with the prefix prev_.
Usage
Calculate the amount of change in GC count every minute.
table sys_gc_logs
 | timechart span=1m count
 | prev count
 | eval delta = count - prev_count
Retrieve GC logs with a GC occurrence interval of 10 seconds or less.
table order=asc sys_gc_logs
 | prev _time
 | eval interval = datediff(prev__time, _time, "sec")
 | search interval < 10
rename
Changes the source field name to the specified field name.
Syntax
rename FIELD as NEW_NAME[, FIELD as NEW_NAME, ...]
Required Parameter
FIELD
Name of the source field
as NEW_NAME
New name to the field with as directive
Usage
Rename src_ip field to Source
rename src_ip as Source
repeat
Repeats the result as many times as specified. It does not guarantee the iteration order. It may be repeated for each row, or it may be repeated for a set of records.
Syntax
repeat count=INT
Required Parameter
count=INT
Number of times to repeatedly return the result
Usage
Return the latest 10 CPU usage rates 3 times
table limit=10 sys_cpu_logs | repeat count=3
Generate 100 arbitrary data points.
json "{}" | repeat count=100
 | eval seq=seq()
 | eval rand_value=rand(100)
rex
Extracts the fields from the specified field using a regular expression.
Syntax
rex field=FIELD "REGEX"
Required Parameter
field=FIELD
Target field from which to extract the string using a regular expression.
"REGEX"
Extended regular expression to give the field name. If you specify the group in the form of (?<field>) in the regular expression, the command extracts the string matched to the group to the field field.
Usage
Look up a file path starting with GET /game/flash/ or POST /game/flash from the line field and then return the matched ones to the filename field.
rex field=line "(GET|POST) /game/flash/(?<filename>([^]*))"
Extract the string in the timestamp pattern from the line field and assign it to the timestamp field.
rex field=line "(?<timestamp>\d+-\d+-\d+ \d+:\d+:\d+)"
Extract the strings from the line field and assign them to the url and querystring fields.
rex field=line "(GET|POST) (?<url>[^]*) (?<querystring>[^]*) "
rollup
Calculates multiple levels of subtotals across a group of fields along with the grand total. This command creates subtotals that roll up from the most detailed level to a grand total, following a grouping field specified in the by clause.
Syntax
rollup [label=VALUE] AGGR_FUNC [as ALIAS], ... [by GRP_FIELD, ...]
Required Parameter
AGGR_FUNC [as ALIAS], ...
Pairs of a aggregate function (AGGR_FUNC) and optional alias (ALIAS) as a field name, separated by a comma (,). If no alias provided, the function name is labeled as the field name, such as count() and sum(sent_pkts). It is recommended that you specify an ALIAS.
Optional Parameter
label=VALUE
Label given to the aggregate value (default: null).
by GRP_FIELD, ...
Grouping fields with by directive, separated by a comma(,).
Usage
Calculate the subtotal for each action field, and grand total.
rollup count by action
Calculate sub-totals and grand totals (the label is displayed as "TOTAL") of the count and size for the action and status fields.
rollup label=TOTAL count, sum(size) as size by action, status
search
Filters only the input data that match the specified expression.
Syntax
search [limit=INT] EXPR
Required Parameter
EXPR
Filter conditions in the form of an expression. For example, you can enter a comparison expression in the form "KEY == VALUE" or "KEY != VALUE" or a boolean expression. You can concatenate conditional expressions using logical operators such as and and or.
Only if the EXPR is true, the data can be passed to the next query command.
Optional Parameter
limit=INT
Maximum number of records to return (default: unlimited).
Usage
Filter a log containing the game string literal in the line field (supports wildcards).
search line == "*game*"
Filter a log where the status code is not 200.
search status != 200
Search for the case where src_ip is 1.2.3.4 and dst_port is 22.
search src_ip == ip("1.2.3.4") and dst_port == 22
serial
Serializes the input in tuple units to run commands whose order is important and passes the subquery results by concatenating them.
Syntax
serial [SUBQUERY]
Required Parameter
SUBQUERY
Subquery that can process the stream, enclosed in a pair of square brackets ([]).
Usage
Apply the CEP function (evtctxgetvar(), evtctxsetvar()) by row
table iis
| # Serializing CEP operations
| serial [
 search cs_uri_stem == "*game*"
 | evtctxadd topic=TEST key=cs_uri_stem maxrows=0 true
 | eval prev_ip = evtctxgetvar("TEST", cs_uri_stem, "prev_ip")
 | eval _dummy = evtctxsetvar("TEST", cs_uri_stem, "prev_ip", c_ip)
]
| fields _time, cs_method, prev_ip, c_ip, cs_uri_stem, cs_uri_query
signature
Extracts a signature consisting of a set of special characters from the line field. This command is typically used to extract log samples by pattern type before developing a parser.
Syntax
signature
Usage
Extract the first sample log for each signature.
signature | stats first(line) by signature
sort
Sorts input data based on the specified fields.
Syntax
sort [limit=INT] [-]FIELD, ... [by PARTITION_FIELD, ...]
Required Parameter
[-]FIELD, ...
Sort fields and order in which to sort the input data set, separated by a comma (,). The default order of the field is ascending order. To sort in descending order, prefix the name with a minus symbol(–).
Optional Parameter
limit=INT
Number of records to return from the sorted results (default: unlimited).
by PRTITION_FIELD, ...
After partitioning based on the value of the partition field, you can sort records by partition. If you use the limit option with the by clause, the command returns top n records from each partition.
Usage
Return the top 10 records in descending order based on the count field.
sort limit=10 -count
Return the top 10 records in descending order based on the bytes and pkts fields.
sort limt=10 -bytes, -pkts
Return the top 10 records in descending order based on the bytes and pkts fields for each src and dst.
sort limt=10 -bytes, -pkts by src, dst
stats
Executes one or more aggregation on each row group.
Syntax
stats [parallel=BOOL] AGGR_FUNC [as ALIAS], ... [by GRP_FIELD, ...]
Required Parameter
AGGR_FUNC [as ALIAS], ...
Name of a group function (AGGR_FUNC) and optional alias (ALIAS) as a field name. If no alias is provided, the command uses the function name as the field name, such as count() and sum(sent_pkts). It is recommended that you specify an ALIAS.
Optional Parameter
parallel=BOOL
Option to enable parallel processing (default: f).
t: Enables processing the query in parallel. The processing speed increases but the order of data is not guaranteed. Avoid using this option in query commands where the order of the data matters.
f: Disables processing the query in parallel.
by GRP_FIELD, ...
Grouping fields with by directive, separated by a comma(,).
Usage
Return the number of rows.
stats count
Return the number of rows for each value of src_ip field.
stats count by src_ip
Return the number of rows by grouping it into pairs of src_ip and dst_ip fields.
stats count by src_ip, dst_ip
Calculate sum(bytes) and count() by grouping them into pairs of src_ip and dst_ip fields.
stats sum(bytes) as bytes, count by src_ip, dst_ip
timechart
Calculates the result of the aggregate function for every specified time span. If you specify a group field using the by clause, the field is created as a group field value and the statistics for each field are calculated.
Syntax
timechart span=INT{y|mon|w|d|h|m|s} AGGR_FUNC() [as ALIAS], ... [by GRP_FIELD, ...]
Required Parameter
span=INT{y|mon|w|d|h|m|s}
Time span to create a row group based on the _time field. You can specify time in units of s (second), m (minute), h (hour), d (day), w (week), mon (month), and y (year). For example, 10m is a unit of 10 minutes. If you use a unit of month mon, you can specify only 1mon, 2mon, 3mon, 4mon, and 6mon among the divisors of 12 to enable aggregation. That is, 3mon is allowed, but 5mon is NOT. You need to use 1y instead of 12mon. When the unit is y, only 1y is allowed.
AGGR_FUNC [as ALIAS], ...
Name of a aggregate function (AGGR_FUNC) and optional alias (ALIAS) with the as directive as a field name. If no alias is provided, the command uses the function name as the field name, such as count() and sum(sent_pkts). It is recommended that you specify an ALIAS.
Optional Parameter
by GRP_FIELD, ...
Grouping fields with by directive, separated by a comma(,).
Usage
Count total log occurrences for every 10 minutes.
timechart span=10m count
Show the trend of changes in bytes for every 1 minute.
timechart span=1m sum(bytes)
Count the number of log occurrences for every 1 hour for each destination port.
timechart span=1h count by dst_port
tojson
Converts the given field values to the JSON string.
Syntax
tojson [output=TARGET_FIELD] [FIELD, ...]
Optional Parameter
output=TARGET_FIELD
Field to store the converted JSON string (default: _json).
FIELD, ...
Fields to be converted into the JSON string, separated by a comma (,) (default: all fields).
Usage
Convert the all fields into the json string and assign it to the result field.
tojson output=result
Convert the _time and line fields into the json format and assign it to the jsonlog field.
tojson output=jsonlog _time, line
Data Mapping
lookup
Looks up values in the specified lookup table, and assign them to fields. First, you need to load the lookup table in advance, or use the memlookup command to configure the in-memory lookup table.
Syntax
lookup LOOKUP_TABLE KEY_FIELD output MAP_FIELD [as ALIAS], ...
Required Parameter
LOOKUP_TABLE
Lookup table to be used for field value conversion. Logpresso has a built-in geoip lookup table, which contains the following fields: country (ISO 2-digit country code), region, city, latitude, and longitude. You can use this table to convert input field values, which are either IP address types or strings, to values in the mapping fields.
KEY_FIELD
Field name that operates as the key in the lookup table.
output MAP_FIELD [as ALIAS], ...
MAP_FIELD refers to the name of the field to be mapped based on the key field value in the lookup table. After retrieving a record that matches the key value in the lookup table, it takes the specified field value from the lookup record and assigns it to the output field. You can use the as clause to specify the output field name (ALIAS) of the corresponding lookup mapping field. If you omit the clause, the mapping field name is used as it is.
Usage
Lookup the geolocation of the IP address using geoip
lookup geoip src_ip output country
lookup geoip src_ip output region
lookup geoip src_ip output city
lookup geoip src_ip output latitude, longitude
lookuptable
Enumerates the contents of a lookup table. The contents of the lookup table created based on the database in the web console, geoip lookup table, and lookup using the memlookup command cannot be enumerated.
You can add a file-based lookup table in "QUERY > Lookup" (ENT, STD).
Syntax
lookuptable LOOKUP_TABLE [OPTIONS]
Required Parameter
LOOKUP_TABLE
Lookup table name to enumerate.
Optional Parameter
limit=INT
Maximum number of records to load (default: unlimited).
offset=INT
Number of records to skip (default: 0).
FIELD, ...
Field names, separated by a comma(,).
Usage
Enumerate all fields of the lookup table country_code
lookuptable country_code
Enumerate only 30 records of code fields in the lookup table country_code
lookuptable country_code limit=30 code
Enumerate country and population fields in the lookup table country_code
lookuptable country_code country, population
memlookup
Creates or drops an in-memory lookup table that can be called by the lookup command, or enumerates all the records created in the table.
Syntax
To enumerate in-memory lookup tables, or to enumerate records of the specific in-memory lookup table
memlookup [op=list] [name=TABLE]
To create an in-memory lookup table (using the data received by the pipe)
memlookup op=build name=TABLE key=KEY_FIELD FIELD, ...
To drop an in-memory lookup table
memlookup op=drop name=TABLE
Required Parameter
op={list|build|drop}
Operation to be performed (default: list).
build: Builds a lookup table using the data received as input until the query command is complete.
drop: Drops the mapping table specified by the name option.
list: Enumerates in-memory lookup table, or records of the lookup table specified by the name option. If the lookup table is not created by memlookup, the query fails. If you execute the memlookup command without any option, it is the same as executing it by specifying only the op=list option.
name=TABLE
Target table on which to run the operation specified by the op={build|drop|list} option. When op=list, if you do not specify any lookup table, the result displays the metadata of all in-memory lookup tables. The information shown here is as follows: name (lookup name), key (key field name), and size (number of records of the lookup table). This option can be omitted when op=list.
key=KEY_FIELD FIELD, ...
Key field name when op=build.
FIELD, ...
Field names, separated by a comma (,), to be created when op=build.
Usage
Create a lookup table from a query.
Create a lookup table named http_status with the status field as the key and desc1 and desc2 as the data field in a CSV file that has status, desc1 and desc2 columns.
csvfile http_status.csv
 | memlookup op=build name=http_status key=status desc1, desc2
Enumerate in-memory lookup tables.
You can see the lookup table information created by memlookup. The information returned is the lookup table name, key field, and the total number of records.
memlookup
The above command has the same result as the following command.
memlookup op=list
Enumerate all records in the specified lookup table.
If you enumerate the list by specifying the name of the lookup, you can see all the information for the lookup.
memlookup name=http_status
The above command has the same result as the following command.
memlookup op=list name=http_status
Drop an in-memory lookup table.
You can drop the specified lookup table by assigning drop as the value of the operator (op) option. If you do not specify a lookup name, an error occurs.
memlookup op=drop name=http_status
nslookup
Loads the value specified as the domain field, queries the DNS to resolve names, and outputs the result.
Syntax
nslookup ns=IP_ADDR [OPTIONS] DOMAIN_FIELD output FIELD, ...
Required Parameter
ns=IP_ADDR
IPv4 or IPv6 address of the DNS server.
DOMAIN_FIELD
Field with domain name.
output FIELD, ...
Fields to retrieve from the DNS response, separated by a comma (,). Specify one or more of the following:
ip: IPv4 or IPv6 address
status: Transaction message status. If there is an error, an error message is displayed.
flags: Control flags in request/response message
AA: Authoritative answer
TC: Truncated
RD: Recursion desired
RA: Recursion available
answers: Response result of DNS server
authorities: Information of authoritative DNS servers
additionals: Other additional information
Optional Parameter
cache=INT
Cache size of DNS response in bytes (default: 1,048,576. approx. 1 MB)
timeout=INT
DNS response timeout in seconds (default: 5).
type=TYPE
The type of DNS record to query the DNS server (default: A). Specify one of the following:
A: IPv4 address record, mapping hostnames to an IP address of the host.
AAAA: IPv6 address record, mapping hostnames to an IP address of the host.
CNAME: Canonical name. An alias from one domain name to another domain name.
MX: Mail exchange record. The mail server responsible for accepting email messages on behalf of a domain name.
NS: Name server record, delegating a DNS zone to use the given authoritative name servers.
PTR: PTR resource record, a pointer to canonical name. Commonly used for reverse DNS lookups.
TXT: Text record, arbitrary human-readable or machine-readable text.
Usage
Perform DNS lookup for domain by asking name server 1.1.1.1.
table spamhouse
| nslookup timeout=5 ns="1.1.1.1" domain
 output ip, status, flags, answers, authorities, additionals
Data Loading
drop
Discards all incoming data. This is used when executing a query command when executing only batches where no query results are needed, or when trying to measure only the query execution time of the previous command.
Syntax
drop
import
Inserts new records into the specified table. Administrative privileges are required to execute this command.
Syntax
import TABLE
Required Object
TABLE
Name of table in which to store the data.
Usage
Import the entire sys_cpu_logs data into old_sys_cpu_logs.
table order=asc sys_cpu_logs
| import create=t old_sys_cpu_logs
insert
Inserts records by selecting a table based on the field values entered. Administrative privileges are required to execute this command.
Syntax
insert table=TABLE
Required Parameter
table=FIELD
Name of field to record data. When data is logged, the field specified in the table option is excluded and logs without that field are not logged.
outputcsv
Exports the specified fields of all input data to the CSV/TSV file.
Syntax
outputcsv [OPTIONS] FILE_PATH FIELD, ...
Required Parameter
FILE_PATH
Path to the CSV/TSV file.
FIELD, ...
Fields to be output in a CSV or TSV file, separated by a comma(,).
Both the default CSV and TSV files have fixed columns, orders, and numbers on each of their first lines, but Logpresso data may have different fields existing in each row. So please be sure to define the output fields. If you want to record data in a file without specifying an output field, refer to the 'outputjson' command.
Optional Parameter
append=BOOL
Option to enable appending data to the end of the file specified in the FILE_PATH (default: f).
t: Appends the field records to the end of the file specified as FILE_PATH. If the file does not exist, the file is created. You cannot set this option to t when overwrite=t.
f: NOT append the field records to the end of the file specified as FILE_PATH. The query fails if the file exists.
bom=BOOL
Option to enable the addition of BOM(byte order mark) to the file header (default: f).
t: Adds BOM to the file header
f: NOT add BOM to the file header.
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
flush=INT{y|mon|w|d|h|m|s}
Cycle to flush the output buffer to the file specified as FILE_PATH. You can use one of the cycle units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, to flush the buffer every 5 seconds, specify 5s.
overwrite=BOOL
Option to enable overwriting the file specified as FILE_PATH, if it exists (default:f).
t: Overwrites the file specified as FILE_PATH, if it exists. You cannot set this option to t when the append option is t.
f: NOT overwrite the file specified as FILE_PATH, if it exists. The query fails if the file exists.
partition=BOOL
Option to enable macro in the FILE_PATH (default: f).
t: Enables macro
f: Disables macro
You can specify FILE_PATH to change the directory and file path over time using a macro with the partition=t option. The available macros are {logtime:FMT} and {now:FMT}. For input examples, refer to Usage #2.
{logtime:FMT}: Names the directory or file based on the log occurrence time.
{now:FMT}: Names the directory or file based on the current time.
If you set 'partition=t' and do not use a macro on the path, the query fails.
tab=BOOL
Option to use tab character as a separator (default: f).
t: Uses tab character as a separator. This is useful for processing tab-separated values (TSV) files.
f: Uses comma (,) as a separator.
tmp=TMP_FILE_PATH
Path to a temporary file. Once you set this option, the command creates a temporary file and outputs the result, and moves the file to the path specified by FILE_PATH when the query finishes successfully.
Usage
Record src_ip and dst_ip field values in the ippair.csv file.
outputcsv /opt/logpresso/files/ippair.csv src_ip, dst_ip
Partition the directory according to the log occurrence date using macro, create the file name based on the current time, and then record the src_ip and dst_ip field values.
outputcsv
 partition=t
 /opt/logpresso/files/{logtime:/yyyy/MM/dd/}/{now:HHmm}.csv
 src_ip, dst_ip
outputjson
Exports the value of a specific field in JSON format. Each JSON record is separated by a newline.
Syntax
outputjson [OPTIONS] FILE_PATH [FIELD, ...]
Required Parameter
FILE_PATH
Path to JSON file.
Optional Parameter
append=BOOL
Enables or disables appending data to the end of the file specified in the FILE_PATH (default: f).
t: Appends the field records to the end of the file specified as FILE_PATH. You cannot set this option to t when overwrite=t.
f: NOT append the field records to the end of the file specified as FILE_PATH. The query fails if the file exists.
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
flush=INT{y|mon|w|d|h|m|s}
Cycle to flush the output buffer to the file specified as FILE_PATH and to flush buffer. You can use one of the cycle units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, to flush the buffer every 5 seconds, specify 5s.
overwrite=BOOL
Option to enable overwriting the file specified as FILE_PATH, if it exists (default:f).
t: Overwrites the file specified as FILE_PATH, if it exists. You cannot set this option to t when the append=t.
f: NOT overwrite the file specified as FILE_PATH, if it exists. The query fails if the file exists.
partition=BOOL
Option to enable macro in the FILE_PATH (default: f).
t: Enables macro
f: Disables macro
You can specify FILE_PATH to change the directory and file path over time using a macro when partition=t. The available macros are {logtime:FMT} and {now:FMT}. For input examples, refer to Usage #3.
{logtime:FMT}: Names the directory or file based on the log occurrence time.
{now:FMT}: Names the directory or file based on the current time.
If you set 'partition=t' and do not use a macro on the path, the query fails.
tmp=TMP_FILE_PATH
Path to a temporary file. Once you set this option, the command creates a temporary file and outputs the result, and moves the file to the path specified by FILE_PATH when the query finishes successfully.
FIELD, ...
Fields to be output in the JSON file, separated by a comma(,) (default: all fields).
Usage
Record all fields in the output.json file
outputjson /opt/logpresso/files/output.json
Record src_ip and dst_ip in the ippair.json file
outputjson /opt/logpresso/files/ippair.json src_ip, dst_ip
Partition the directory according to the log occurrence date using macro, create the file name based on the current time, and then record the src_ip and dst_ip field values.
outputjson
 partition=t
 /opt/logpresso/files/{logtime:/yyyy/MM/dd/}/{now:HHmm}.json
 src_ip, dst_ip
outputpcap
Records the payload field, which is received as an input, as a PCAP file in the specified file system path.
Syntax
outputpcap FILE_PATH
Required Parameter
FILE_PATH
Path to save the PCAP file
Usage
Store only packets with a destination or source port of 80 while monitoring the stream created by the pcap_stream log collector for 5 minutes.
logger window=5m localhost\pcap_stream
| pcapdecode
| search src_port==80 or dst_port==80
| outputpcap /opt/logpresso/files/http.pcap
outputtxt
Records the given field values to the specified file system path as a text file.
Syntax
outputtxt [append=BOOL] [delimiter=CHAR] [encoding=CHARSET] [flush=INT{y|mon|w|d|h|m|s}] [gz=BOOL] [partition=BOOL] [tmp=TMP_FILE_PATH] FILE_PATH FIELD, ...
Required Parameter
FILE_PATH
Path to save the txt file.
FIELD, ...
Fields to be output in the TXT file, separated by a comma(,).
Optional Parameter
append=BOOL
Enables or disables appending data to the end of the file specified in the FILE_PATH (default: f).
t: Appends the field records to the end of the file specified as FILE_PATH. You cannot set this option to t when overwrite=t.
f: NOT append the field records to the end of the file specified as FILE_PATH. The query fails if the file exists.
delimiter="CHAR"
Character to use as the field delimiter (default: space).
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
flush=INT{y|mon|w|d|h|m|s}
Cycle to flush the output buffer to the file specified as FILE_PATH and flush buffer. You can use one of the cycle units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, to flush the buffer every 5 seconds, specify 5s.
gz=BOOL
Option to enable compressing text files into a gz archive file (default: f).
t: Enables GZIP compression.
f: Disables GZIP compression.
overwrite=BOOL
Option to enable overwriting the file specified as FILE_PATH, if it exists (default:f).
t: Overwrites the file specified as FILE_PATH, if it exists. You cannot set this option to t when the append=t.
f: NOT overwrite the file specified as FILE_PATH, if it exists. The query fails if the file exists.
partition=BOOL
Option to enable macro in the FILE_PATH (default: f).
t: Enables macro.
f: Disables macro.
You can specify FILE_PATH to change the directory and file path over time using a macro when partition=t. The available macros are {logtime:FMT} and {now:FMT}. For input examples, refer to Usage #2.
{logtime:FMT}: Names the directory or file based on the log occurrence time.
{now:FMT}: Names the directory or file based on the current time.
If you set 'partition=t' and do not use a macro on the path, the query fails.
tmp=TMP_FILE_PATH
Path to a temporary file (default: None). Once you set this option, the command creates a temporary file and outputs the result, and moves the file to the path specified by FILE_PATH when the query finishes successfully.
Usage
Record src_ip and dst_ip in the ippair.txt file.
outputtxt /opt/logpresso/files/ippair.txt src_ip, dst_ip
Partition the directory according to the log occurrence date using macro, creates the file name based on the current time, and then records the src_ip and dst_ip field values.
outputtxt
 partition=t
 /opt/logpresso/{logtime:/yyyy/MM/dd/}-{now:HHmm}.txt
 src_ip, dst_ip
sendmail
Passes the incoming record as email. The sendmail command loads the input into the mail queue as soon as it comes in and sends the mail asynchronously. Administrative privileges are required to execute this command.
To send email, you need to configure the mail server in the System Settings menu.
Syntax
sendmail [html=BOOL]
Optional Parameter
html=BOOL
Option to regard the message field value received as input as html format and parses the body of the mail (default: f).
t: Parses the message field as html.
f: Parses the message field as plain text.
Description
The fields as required input are as follow:
to
Email addresses separated by a comma(,).
subject
Email subject.
message
Email body text.
If the input field is missing or the address list is incorrect, the command records an error message in the _sendmail_fail field. However, errors caused by missing SMTP settings are not displayed.
You can use the 'logpresso.mailQueue' command to see a list of outgoing mail currently pending and delete it at once with the logpresso.clearMailQueue command in the logpresso shell.
Usage
Create to, subject, and message fields and pass them to the sendmail command to send an email.
json "{}"
| eval to="example_1@example.com, example_2@example.com",
 subject="Hello World",
 message="<h1>Hello, World</h1>"
| sendmail html=t
sendsyslog
Sends syslog message to the specified IP address.
Syntax
sendsyslog [OPTIONS] dst=IP_ADDR
Required Parameter
dst=IP_ADDR
IP address of syslog server
Optional Parameter
format=json|txt
Format of the log to be sent: either json or txt (default: txt).
json: Converts all data received as input into JSON format and transmits it
txt: Transmits the string value of the line field as it is.
port=INT
Port number of syslog server (default: 514). This designates a value from 1 to 65535 for the port number.
pri=INT
PRI constant value defined in RFC 5424: https://tools.ietf.org/html/rfc5424 (default: 134, meaning Facility: local0, Severity: Info).
The PRI constant is calculated as a value that adds SEVERITY to a value multiplied by 8 in FACILITY. The following table is a table that is configured as a value calculated according to the calculation formula.
	Facility(↓)
Severity(→)
	0/Emer
	1/Alert
	2/Crit
	3/Error
	4/Warn
	5/Notice
	6/Info
	7/Debug

	0 / kern
	0
	1
	2
	3
	4
	5
	6
	7

	1 / user
	8
	9
	10
	11
	12
	13
	14
	15

	2 / mail
	16
	17
	18
	19
	20
	21
	22
	23

	3 / deamon
	24
	25
	26
	27
	28
	29
	30
	31

	4 / auth
	32
	33
	34
	35
	36
	37
	38
	39

	5 / syslog
	40
	41
	42
	43
	44
	45
	46
	47

	6 / lpr
	48
	49
	50
	51
	52
	53
	54
	55

	7 / news
	56
	57
	58
	59
	60
	61
	62
	63

	8 / uucp
	64
	65
	66
	67
	68
	69
	70
	71

	9 / clock
	72
	73
	74
	75
	76
	77
	78
	79

	10 / authpriv
	80
	81
	82
	83
	84
	85
	86
	87

	11 / ftp
	88
	89
	90
	91
	92
	93
	94
	95

	12 / ntp
	96
	97
	98
	99
	100
	101
	102
	103

	13 / audit
	104
	105
	106
	107
	108
	109
	110
	111

	14 / alert
	112
	113
	114
	115
	116
	117
	118
	119

	15 / solaris-cron
	120
	121
	122
	123
	124
	125
	126
	127

	16 / local0
	128
	129
	130
	131
	132
	133
	134 (default)
	135

	17 / local1
	136
	137
	138
	139
	140
	141
	142
	143

	18 / local2
	144
	145
	146
	147
	148
	149
	150
	151

	19 / local3
	152
	153
	154
	155
	156
	157
	158
	159

	20 / local4
	160
	161
	162
	163
	164
	165
	166
	167

	21 / local5
	168
	169
	170
	171
	172
	173
	174
	175

	22 / local6
	176
	177
	178
	179
	180
	181
	182
	183

	23 / local7
	184
	185
	186
	187
	188
	189
	190
	191

src=IP_ADDR
Replaces the source IP address with an arbitrary IP instead of the Logpresso IP address
To replace the source IP address and transmit it, the 'libpcap' library must be installed on your operating system. You may also need to recompile the 'araqne-pcap' library for your operating system. Use PCAP to create and transmit readdressed packets only when specifying the source IP address other than Logpresso IP address. Note that if the packet size exceeds the MTU, the transmission fails.
Data Merging
join
Compares the fields of data received as input to the subquery result field and joins them.
'join' does not support stream queries. To apply join to stream queries, use the 'streamjoin' command.
Syntax
join [type={cross|full|inner|left|leftonly|right|rightonly}] KEY_FIELD, ... [SUBQUERY]
Required Parameter
KEY_FIELD, ...
Key fields as the criteria for join, separated by a comma (,).
[SUBQUERY]
Subquery that returns the data to be joined with the input data, enclosed in a pair of square brackets ([]).
Optional Parameter
type={cross|full|inner|left|leftonly|right|rightonly}
Join type (default: inner).
cross: Also known as "Cartesian product", it returns a set consisting of M x N records by combining a set of input data (M records) with a set of subquery results (N records). This type of JOIN does not require a joining condition.
full: For records with matching keys, it returns by combining them, and for records with no matching keys, it returns them as they are. This is similar to the union of data.
If the keys match, it combines the subquery field with the input data record and then returns.
If the keys do not match, it returns the input data and the subquery data respectively as they are.
inner: In general, join refers to "inner join". It combines and returns only the records with matching keys. It does not return records that do not contain keys. This is similar to the intersection of data.
left: For records with matching keys, it returns by combining them, and for records with no matching keys, it returns only records of input data.
leftonly: It returns only records with keys that do not match the set of subquery results. It does not return records with matching keys.
right: For records with matching keys, it returns by combining them, and for records with no matching keys, it returns only the result of the subquery.
rightonly: returns only records with keys that do not match the set of subquery results. It does not return records with matching keys.
Usage
Execute inner join with the code field as the key.
Pass json with the code field as input data
 | json "[
 {'code':1}, {'code':2}, {'code':3}
]"
 | # A subquery command that returns json with code and name fields
 Executes the inner join query using input data and subquery command
 result data with the "code" field as the key.
 | join code [
 json "[
 {'code':1, 'name':'foo'},
 {'code':2, 'name':'bar'}
]"
]
Result of inner join:
	code
	name

	1
	foo

	2
	bar

Output the result except those retrieved in the subquery (leftonly join).
json "[
 {'field1': 'A'},
 {'field1': 'B'},
 {'field1': 'C'},
 {'field1': 'D'}
]"
 | join type=leftonly field1
 [
 json "[
 {'field1': 'A', 'field2': 'Foo'},
 {'field1': 'D', 'field2': 'Bar'}
]"
]
Result of leftonly join:
	field1

	B

	C

The query command executed above has the same execution result as the following query command (application of the result of left join).
json "[
 {'field1': 'A'},
 {'field1': 'B'},
 {'field1': 'C'},
 {'field1': 'D'}
]"
 | join type=left field1 [
 json "[
 {'field1': 'A', 'field2': 'Foo'},
 {'field1': 'D', 'field2': 'Bar'}
]"
]
 | search isnull(field2)
Output statistics for each department. It returns all departments even if statistical values do not exist (right join).
json "[
 {'id': 1, 'cases': 1000},
 {'id':2, 'cases': 2000}
]"
 | join type=right id [
 json "[
 {'id':1, 'dept':'sales'},
 {'id':2, 'dept':'operation'},
 {'id':3, 'dept':'technical'}
]"
]
Result of right join:
	id
	dept
	cases

	1
	sales
	1000

	2
	operation
	2000

	3
	technical
	

Combine document security violation logs and media control violation logs based on accounts, and output log if they do not match (full join).
json "[
 {'acct':'bob', 'document security violation': 1},
 {'acct':'alice', 'document security violation': 5}
]"
 | join type=full acct [
 json "[
 {'acct':'alice', 'media control violation': 8},
 {'acct':'clark', 'media control violation': 3}
]"
]
Result of full join:
	acct
	document security violation
	media control violation

	bob
	1
	

	alice
	5
	8

	clark
	
	3

streamjoin
Compares the fields of stream data received as input to the subquery result field and joins them.
Syntax
streamjoin [OPTIONS] KEY_FIELD, ... [SUBQUERY]
Required Parameter
KEY_FIELD, ...
Key fields as the criteria for join, separated by a comma (,).
[SUBQUERY]
Subquery that returns the data to be joined with the input data, enclosed in a pair of square brackets ([]).
Optional Parameter
timeout=INT{s}
Time for waiting until the subquery is completed (default: no timemout).
type={inner|left|leftonly}
Join type (default: inner).
inner: In general, join refers to "inner join". It combines and returns only the records with matching keys. It does not return records that do not contain keys. This is similar to the intersection of data.
left: For records with matching keys, it returns by combining them, and for records with no matching keys, it returns only records of input data.
leftonly: It returns only records with keys that do not match the set of subquery results. It does not return records with matching keys.
Description
The streamjoin command loads the results of the subquery into off-heap memory and performs a hash join, so it is faster than the join command and can also be used in stream queries. However, only inner, left and leftonly are available, and the size of data that can be processed is limited by the capacity of the memory pool. If the subquery fails, the command adds an exception message to the _streamjoin_fail field.
You can adjust the size of the memory pool by specifying the following options when running Logpresso (default: 500M): -Dlogpresso.streamjoin.max_buffer_size=1G
You can check the status of memory usage with the following query:
Status of memory pool usage: system memory pools
Status of memory usage by query: system memory objects
Usage
Join the data imported from the database with the code field as a key (See dbquery).
json "[{'code':1}, {'code':2}, {'code':3}]"
 | streamjoin code
 [dbquery ora select code, description from tbl_codes]
Join the data imported from the database with the code field as a key. However, limit SQL queries to 10 seconds.
json "[{'code':1}, {'code':2}, {'code':3}]"
 | streamjoin timeout=10s code
 [dbquery ora select code, description from tbl_codes]
union
Merges the results of the subquery. It does not guarantee the output order, because union is executed in parallel with other queries. As with running statistical processing, this is primarily used when high performance is required and the order is not important.
Syntax
union [SUBQUERY]
Required Parameter
[SUBQUERY]
Subquery that returns the data to be combined with the input data, enclosed in a pair of square brackets ([]).
Usage
Merge SQL query results of 2 DBs.
dbquery db1 select * from nodelist
| union [dbquery db2 select * from nodelist]
Complex Event Processing
evtctxadd
Creates the event context with the specified key, if the input data matches the conditional expression.
Syntax
evtctxadd dynamic=t key=KEY_FIELD CONDITIONAL_EXPR
or
evtctxadd [expire=INT{mon|d|h|m|s}] [maxrows=INT] [timeout=INT{mon|d|h|m|s}] topic=STR key=KEY_FIELD CONDITIONAL_EXPR
Required Parameter
dynamic=BOOL
Option to enable dynamic options (default: f).
t: Gets topic, expire, timeout, maxrows options from input records. You cannot use the topic, expire, timeout, and maxrows options when dynamic=t.
f: Disables dynamic option.
topic=STR
Name of event context. the topic acts like the table name in an in-memory database. You cannot use this option when dynamic=t.
key=KEY_FIELD
Name of the field to record the unique key that distinguishes the event context.
CONDITIONAL_EXPR
Conditional expression for creating an event context.
Optional Parameter
expire=INT{mon|d|h|m|s}
Expiration period in units of mon (month), d (day), h (hour), m (minute), and s (second). The event context is deleted once a specified expiration period has passed from when the event context is created. Once the expiration period is set, it is not extended, even if there is input data that matches the conditional expression CONDITIONAL_EXPR. You cannot use this option when dynamic=t.
maxrows=INT
Maximum number of rows to store in the event context (default: 10). You cannot use this option when dynamic=t.
timeout=INT{mon|d|h|m|s}
Length of time after the last event received until timeout. You can specify in units of mon (month), d (day), h (hour), m (minute), and s (second). You cannot use this option when dynamic=t.
Usage
Generate a timeout if it takes more than 10 seconds to receive a response after sending a message.
evtctxadd topic=txmatch key=txkey timeout=10s type == "send"
| evtctxdel topic=txmatch key=txkey type == "recv"
The example query command consists of the following event context creation/deletion commands:
If the type value is send, use the evtctxadd command to create the event context.
If the type value is recv, use the evtctxdel command to delete the event context.
When the event context condition occurs, both commands distinguish the event context by associating the topic txmatch and the event context key field txkey.
Now, if the following event data is passed as an input,
json "{'txkey':'001122', 'type':'send'}"
json "{'txkey':'001122', 'type':'recv'}"
The event context is created when the first data is provided. Different events occur depending on the time the second data is provided.
If the second data is entered within 10 seconds, an event context deletion (EventCause.REMOVAL) event occurs.
If the second data is entered after 10 seconds, or if it is not provided, a timeout (EventCause.TIMEOUT) event occurs.
Depending on the cause of the deletion of the event context, you can perform different processing with subsequent commands.
evtctxdel
Removes the event context with the given key, if the input data matches the conditional expression.
Syntax
evtctxdel {dynamic=t|topic=STR} key=KEY_FILED CONDITIONAL_EXPR
Required Parameter
dynamic=BOOL
Option to enable dynamic options (default: f).
t: Gets topic option from input records. You cannot use the topic option when dynamic=t.
f: Disables dynamic option.
topic=STR
Name of event context. The topic is like the table name in an in-memory database.
key=KEY_FIELD
Field to extract the key value that distinguishes the event context.
CONDITIONAL_EXPR
Conditional expression for removing an event context.
evtctxdrop
Deletes all event contexts corresponding to the specified topic at once.
Syntax
evtctxdrop all=BOOL
or
evtctxdrop topic="STR"
Required Parameter
You must specify one of the following options:
all=BOOL
Option to delete all event contexts at once (default: f). This option cannot be used with topic=STR.
topic="STR"
Name of event context. The command deletes all event contexts with names that match the topic. This option cannot be used with all=t.
evtctxlist
Loads the list of event contexts.
Syntax
evtctxlist [topic=STR]
Optional Parameter
topic=STR
Name of event context. The command loads the event context with a name that matches the topic (default: the entire list of event topics).
Machine Learning
anomalies
Calculates the anomaly score using the Isolation Forest modeling (a way of creating a decision tree model by sampling some data).
Syntax
Calculate the anomaly score using a stored training model.
anomalies [sample=INT] [size=INT] model=MODEL
Calculate the anomaly score using a model trained based on subquery results.
anomalies [sample=INT] [size=INT] FIELD, ... [SUBQUERY]
Required Parameter
FIELD, ...
Fields to be used for the Isolation Forest modeling. Use a comma(,) as a separator.
model=MODEL
Name of the Isolation Forest model. You can generate and train the Isolation Forest model by connecting to the Logpresso engine via CLI.
[SUBQUERY]
Subquery that returns the data set for model training.
Optional Parameter
sample=INT
Number of samples to draw when training the Isolation Forest model (default: the square root of the number of samples).
size=INT
Number of trees within the Isolation Forest (default: 100).
Description
The anomaly score, ranging from 0 to 1, is assigned to the _score field.
The higher the score, the more likely it is an anomaly.
A score much smaller than 0.5 indicates normal observations.
If all scores are close to 0.5, the entire sample does not seem to have clearly distinct anomalies.
Usages
Calculate the anomaly score using the anomal_stock model.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/stocks.csv
 | table stocks
 | anomalies model=anomal_stock
 | eval anom = if(_score>0.7, stocks, null)
Calculate using a model trained based on the training data set returned from a subquery.
table stocks
 | anomalies sample=256 stocks
 [csvfile /test/sam_train.csv
 | eval _time=date(date, "yyyyMMdd"), stocks = int (stocks)
 | fields _time, stocks
]
 | eval anom = if(_score>0.65, stocks, null)
 | fields _time, anom, stocks
forecast
Predicts data for given time series data.
Syntax
forecast [OPTIONS] TIME_SERIES_FIELD [by GRP_FIELD, ...]
Required Parameter
TIME_SERIES_FIELD
Field that contains time-series data.
Optional Parameter
count=INT
Number of rows of data to be predicted(default: 5)
period=INT
Time series cycle. It is automatically calculated using a Fast Fourier Transform (FFT) if not specified.
seed=INT
Fixed seed value. Specify this option when you want to keep the same result for the same input.
time=FIELD
Field to be used as the time record (default: _time field)
[by GRP_FIELD, ...]
Grouping fields in the aggregation with by directive, separated by a comma (,). This option MUST follow after the TIME_SERIES_FIELD option.
Description
It is recommended that you set a constant interval between the data in the time field by using the timechart command, and then use the forecast command. There must be at least 4 data points for each grouping field, and the value of the period must be less than one-half of the number of data points.
Usage
Predict values of the count field.
forecast count
Set the time series cycle of the traffic field to 5, and assign the time series prediction data according to the time written in the set_time field. Assign 1234 as a fixed seed value to maintain the same result.
forecast period=5 time=set_time seed=1234 traffic
Predict 10 data points of the series from the sent_bytes field aggregated by the region group.
forecast count=10 sent_bytes by region
kmeans
Classifies the input record into k clusters based on Euclidean distance.
Syntax
kmeans [OPTIONS] FIELD, ...
Required Parameter
FIELD, ...
Name of the fields to be calculated, separated by a comma (,).The field value must be numeric, and any input record whose specified field value is not numeric is ignored. Up to 100,000 input records are allowed. The command classifies the records into the N number of clusters (N starting from 1) and assigns them to the _cluster field. If there are more than 100,000 valid input records, it ignores records after 100,000.
Optional Parameter
k=INT
Number of clusters (default: 3)
iter=INT
Number of times to repeat kmeans (default: 100,000)
Usage
You can test the operation method of the kmeans command with iris data, which is often quoted in machine learning. Run the classification using length and width and compare it to the name of the actual species (download: https://github.com/illinois-cse/data-fa14/blob/gh-pages/data/iris.csv).
csvfile /opt/logpresso/iris.csv
| eval
 sepal_length = double(sepal_length), sepal_width = double(sepal_width)
| kmeans k=4 iter=100000 sepal_length, sepal_width
lof
Calculates Local Outlier Factor (LOF) by calculating the Local Reachability Density (LRD) of each point based on the k-nearest neighbors and calculating the ratio of the local reachability density relative to the adjacent neighbors.
Syntax
lof [k=INT] FIELD, ... [by GRP_FIELD, ...]
Required Parameter
FIELD, ...
Fields that contain numeric data such as integers, real numbers, and dates. Use comma (,) as a separator.
Optional Parameter
k=INT
Number of adjacent nodes to be used for calculation (default: 10)
by GRP_FIELD_1, ...
Grouping fields in the aggregation with by directive, separated by a comma (,). This option MUST follow after FIELD,
If you want to calculate the scoring for each group by using the by clause, the number of records in each group must be greater than the number of adjacent nodes (the value specified by k=INT). If the number of records in the group is less than the number of adjacent nodes, the LOF in the _lof field is not calculated as intended.
Description
This calculates the LOF score on the _lof field for each record, and this value can be classified as follows:
If the value is greater than 1 (LOF(k) > 1): It is located outside the cluster. The greater it is than 1, the more likely it is to be an anomaly.
If the value is an approximation of 1 (LOF(k) ≈ 1): It is located at the boundary of the cluster.
If the value is less than 1 (LOF(k) < 1): It is located inside the cluster.
Usage
Calculate the anomaly based on the field values of sepal_length and sepal_width (download: https://raw.githubusercontent.com/illinois-cse/data-fa14/gh-pages/data/iris.csv).
wget url="https://raw.githubusercontent.com/illinois-cse/data-fa14/gh-pages/data/iris.csv"
| eval line = split(line, "\n")
| explode line
| split sep="," sepal_length,sepal_width,petal_length,petal_width,species
| eval sepal_length = double(sepal_length), sepal_width = double(sepal_width)
| lof sepal_length, sepal_width
| search _lof > 2
rforest
Returns the predicted target using the Random Forest modeling (a way of training an ensemble of decision trees).
Syntax
Predict using a stored training model.
rforest [size=INT] model=MODEL
Predict using a model trained based on subquery results.
rforest [size=INT] target=TARGET_FILED FIELD, ... [SUBQUERY]
Required Parameter
FIELD, ...
Fields as predictor variables for the Random Forest modeling.
model=MODEL
Name of the Random Forest model. You can generate and train the Random Forest model by connecting to the Logpresso engine via CLI.
target=TARGET_FIELD
Field as a target variable for the Random Forest modeling.
[SUBQUERY]
Subquery that returns the data set for model training.
Optional Parameter
size=INT
Number of trees within the random forest (default: 100)
Description
This command returns the predicted value of the target field into the _guess field.
Usages
Predict using the rforest_titanic model.
Download: https://raw.githubusercontent.com/logpresso/dataset/main/titanic/train.csv
 table titanic_test
 | rforest model=rforest_titanic
 | eval _guess = if(_guess=="0", "사망 ", "생존")
Predict using a model trained based on the training data set returned from a subquery.
table titanic_test
 | rforest target=Survived Pclass, Sex, Age, Fare, Embarked
 [csvfile /test/train.csv
 | eval Age=double(Age),
 Fare=double(Fare), CanbinLetter=nvl(substr(Cabin, 0, 1), "--"),
 TicketType=if(isnull(long(Ticket)), substr (Ticket, 0, indexof(Ticket, " ")), "--")
 | rex field=Name ", (?<Title>[^.]+)"
 | eval Survived = if(Survived=="0", " 사망 ", "생존")
]
stl
Decomposes time series data into trends, seasonality, and errors. This command returns up to 1,000 for each grouping field (the field specified by the by clause), and if you do not specify the grouping field, the number of output rows is limited to 1,000.
To increase the limit of the number of stl outputs, add the -Dlogpresso.stl.limit=N booting option and provide the desired value.
Syntax
stl [period=INT{y|mon|w|d|h|m|s}] NUMERIC_FIELD [by GRP_FIELD]
Required Parameter
NUMERIC_FIELD
Time series data to be calculated. The field value must be numbers, such as integers, real numbers, or dates.
Optional Parameter
period=INT{y|mon|w|d|h|m|s}
Time series cycle. You can specify time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). The command performs the analysis assuming that the time series data has repeatability according to the cycle you specified. If you do not specify a time series cycle, it automatically calculates the seasonality cycle through spectral analysis.
by GRP_FIELD
Grouping fields with by directive, separated by a comma(,).
Description
STL is an abbreviation for seasonal-trend decomposition procedure based on loess. If the period is not specified, the command automatically calculates the seasonality cycle through spectral analysis.
The stl command analyzes the time series data and outputs the _trend, _seasonal, and _error fields. If the time series data has no cycle (e.g., period=0m), the _seasonal field does not output.
Procedure
proc
Executes the user-defined procedure.
Syntax
proc PROC_NAME(PARAMETER, ...)
Required Parameter
PROC_NAME(PARAMETER_1, PARAMETER_2, ... PARAMETER_N)
Procedure to execute and parameters in the pre-defined format. If you pass an argument to the procedure according to the parameter format defined, the argument is set to the query parameter and the query that is defined in advance is executed after. You can pass an expression that can be evaluated as a constant according to the parameter type defined by the procedure. The owner of the procedure or an authorized user executes the query with the owner permission for the procedure.
Usage
Save the query command that extracts the record of more than N% overload over the last 24 hours in the web console as a procedure. The name of the procedure here is cpu_overload. You can create a procedure query to refer to the query parameter using the $() function.
table duration=1d sys_cpu_logs
| search kernel + user >= $("threshold")
Now, you can call the procedure as follows:
proc cpu_overload(90)
External System Integration
dbcall
Calls the SQL stored procedure and returns the result of execution (result set and/or output parameters).
Syntax
dbcall PROFILE {SQL_STATEMENT}
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
{SQL_STATEMENT}
SQL statement that calls the SQL stored procedure enclosed in a pair of curly braces({ }).
You can define input and output parameters that start with a colon (:) in the SQL query command.
The input parameter is defined in the form of :name, and a query parameter defined by the set command is inserted.
The output parameter is defined in the form of :name(type). The available output parameter types are varchar, int and datetime.
The output method is as follows:
If the SQL query command returns only the output parameter, the dbcall command outputs 1 tuple consisting of the output parameter.
If the SQL query command returns the result set and output parameter, the dbcall command adds the output parameter field to all tuples of the result set and returns them.
If the SQL query command returns multiple result sets, the dbcall command loads all result sets and then outputs them.
Usage
Load the column configuration of a specific table on a Microsoft SQL server.
dbcall mssql {call msdb.dbo.sp_columns("log_shipping_primaries")}
Load the line value with an id of 1000 as a user-defined procedure in Microsoft SQL Server.
set id = 1000 | dbcall mssql {call GetLine(:id, :line(varchar))}
dbload
Converts the query result into an SQL query command and provides it into an external SQL server. It has the same functionality as the dboutput command, and only the default value of the rowretry option is different.
Syntax
dbload PROFILE [batchsize=INT] [database=SCHEMA] [rowretry=t] [stoponfail=t] [type=update] table=TABLE FIELD, ...
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
table=TABLE
Name of table in which to input the data.
FIELD, ...
Field names to be provided in the database, separated by a comma(,). If you prefix the plus sign (+) with the field name, it is recognized as a key column.
The field name must match the column name of the target table. If the field and column names do not match, use the rename command before the dboutput command to match the name of the column in the SQL database.
Optional Parameter
batchsize=INT
Size of processing unit to be applied to the database batch transaction. Larger units are more efficient because they are committed at once, but if the transaction fails, the number of rollback records also increases. 2000 is recommended. If you do not specify a processing unit size, the processing speed may be slow because the command commits the transaction one by one.
database=SCHEMA
Schema or database to switch to when connecting to the server.
rowretry=BOOL
Option to retry transaction row by row if any query fails (default: t). When enabled, performance may be degraded, but data loss can be minimized.
t: Retries the transaction row by row after the batch transaction fails.
f: NOT retry the transaction row by row after the batch transaction fails.
stoponfail=BOOL
Option to stop the query when transaction fails (default: f).
t: Stops the query when the transaction fails.
f: Skips the failed transaction and executes the next transaction.
type=update
Type of SQL query: either insert or update (default: insert). If you set it to update, you need to specify one or more fields as key columns. This command checks whether the SQL database has a key column by executing an SQL SELECT statement, and runs an INSERT command if there is no key column or an UPDATE command if there is a key column.
dblookup
Assigns the input record to the placeholder of the SQL query and execute the query. The column values of the first loaded record is assigned to the fields.
Syntax
dblookup PROFILE [bypass=BOOL_EXPR] SQL_STATEMENT
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
SQL_STATEMENT
SQL query statement to run.
You can define the input parameter that starts with a colon (:) in the SQL query command. The input parameter is in the form of :name, and the field value of the input record is assigned.
Optional Parameter
bypass=BOOL_EXPR
Boolean expression as condition for not executing the SQL query command. If the condition is true, the command exports the output without executing the SQL query statement.
bypass=BOOLEAN_EXPR generally configures the conditional expression so that the command does not execute SQL unless there is a field value that falls into the conditional clause.
Usage
Expand the field by importing the user name (name) and gender (sex) with the login value.
json "{'login':'logpresso'}"
| dblookup USERDB bypass="isnull(login)"
 select name, sex from users where login = :login
dboutput
Converts the query result into an SQL query command and provides it into an external SQL server. It has the same functionality as the dbload command, and only the default value of the rowretry option is different.
Syntax
dboutput PROFILE [OPTIONS] table=TABLE FIELD, ...
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
table=TABLE
Name of table where you want to input the data.
FIELD, ...
Field names to be provided in the database separated by a comma(,). If you prefix the plus sign (+) with the field name, it is recognized as a key column.
The field name must match the column name of the target table. If the field and column names do not match, use the rename command before the dboutput command to match the name of the column in the SQL database.
Optional Parameter
batchsize=INT
Size of processing unit to be applied to the database batch transaction. Larger units are more efficient because they are committed at once, but if the transaction fails, the number of rollback records also increases. 2000 is recommended. If you do not specify a processing unit size, the processing speed may be slow because the command commits the transaction one by one.
database=SCHEMA
Schema or database to switch after connecting.
rowretry=BOOL
Option to retry transaction row by row when the batch transaction fails (default: f). When enabled, performance may be degraded, but data loss can be minimized.
t: Retries the transaction row by row after the batch transaction fails.
f: NOT retry the transaction row by row after the batch transaction fails.
stoponfail=BOOL
Option to stop the query when transaction fails (default: f).
t: Stops the query when the transaction fails.
f: Skips the failed transaction and executes the next transaction.
type=update
Type of SQL query: either insert or update (default: insert). If you set it to update, you need to specify one or more fields as key columns. This command checks whether the SQL database has a key column by executing an SQL SELECT statement, and runs an INSERT command if there is no key column or an UPDATE command if there is a key column.
dbquery
Runs an SQL query on an external database server.
Syntax
dbquery PROFILE SQL_STATEMENT
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
SQL_STATEMENT
SQL query statement to run. This loads all result sets loaded through JDBC as key-value pairs.
You can define input and output parameters that start with a colon (:) in the SQL query command.
The input parameter is in the form of :name, and a query parameter defined by the set command can be inserted.
The output parameter is defined in the form of :name(type). The available output parameter types are varchar, int and datetime.
Usage
Load 100 logs from the weblogs table.
dbquery oracle select * from weblogs where rownum <= 100
Load the list of employees for the last week from the employee table using the input parameter.
Input parameter: created_at
 | set created_at = string(dateadd(now(), "day", -7), "yyyy-MM-dd")
 | dbquery emp select * from employee where created_at >= :created_at
dbscript
Executes an SQL script to load data. Administrative privileges are required to execute this command.
Syntax
dbscript PROFILE [cs=CHARSET] SQL_FILE_PATH [:parameter ...]
Required Parameter
PROFILE
JDBC connect profile. You can configure the connect profile in the web console.
SQL_FILE_PATH
Path to the SQL script file to run. The maximum length of an SQL script file cannot exceed 1 MB (1,048,576 bytes).
The SQL script file must meet the following conditions:
 - Only the 'SELECT' query is available.
 - You can use a question mark (?) to specify where to insert the parameter.
Optional Parameter
cs=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
:parameter ...
Parameters to be referenced in the script. Use whitespaces as a separator. It replaces the placeholder in the SQL file in the order of the parameters. The name of the parameter must start with a colon (:).You can set the parameters using the set command or take over the procedure call argument as a parameter. For calling procedures, refer to the dbcall command.
ftp
Allows you to browse the file system on the FTP server and transmit the input records to the file.
Syntax
ftp PROFILE SUBCOMMAND [OPTIONS] PATH
Required Parameter
PROFILE
FTP connect profile. You can configure the profile in the web console.
SUBCOMMAND
Command to be executed in the FTP session: ls, cat, put.
ls
Lists files and directories in the PATH on the FTP server.
cat
Reads files in the PATH and outputs their contents as records in the fields line by line. The available export file formats are CSV, JSON, TSV and plain text files.
put
Converts the name and values specified by the fields option into the file in a format specified by the format option, then transmits that file to the PATH on the FTP server.
PATH
Path to a directory or file. If you use a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. /var/log/httpd/access.*).
Optional Parameter
The options for each SUBCOMMAND are as follows:
	Options
	`cat`
	`put`
	`ls`

	append
	-
	O
	-

	encoding
	O
	O
	O

	fields
	-
	O
	-

	format
	O
	O
	-

	limit
	O
	-
	-

	offset
	O
	-
	-

	overwrite
	-
	O
	-

append=BOOL
Option to enable appending data to the end of the file specified in the PATH (default: f).
t: Appends the field records to the end of the file specified by PATH. If the file does not exist, the file is created. You cannot set this to t when overwrite=t.
f: NOT append the field records to the end of the file specified by PATH. The query fails if the file exists.
When using the 'append=t' option, always keep the list order of the 'fields' option the same so that data can be consistent.
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
fields=FIELD_LIST
Fields to be transmitted to the FTP server (default: line). Use comma (,) without any whitespace, as a separator. If there is no line field or the specified field is empty, it is replaced with a hyphen symbol (-) in the output to indicate the field is empty.
format={csv|json|tsv}
File format (csv, json, tsv, default: plain text).
csv or tsv:
When SUBCOMMAND is cat, the first line is considered a regular record. Field name (column header) is assigned in the form columnN (N is a number starting from 0).
, When SUBCOMMAND is put, field names (column header) are assigned with the field names specified by the fields option.
json:
When SUBCOMMAND is cat, it parses the file into the records of key-value pairs line by line. Field names are specified as keys and field values as values.
When SUBCOMMAND is put, it transmits the records consisting of the key-value pairs of the fields specified by the fields option. If the fields option is not specified, records consisting of all field values are transmitted.
Not specified (plain text):
When SUBCOMMAND is cat, it loades the values to the line field line by line.
When SUBCOMMAND is put, it transmits the file in a text format. Values are separated by tab characters in plain text, and empty values (nulls) are replaced with hyphens (-).
limit=INT
Number of records to be output when importing files from the FTP server (default: unlimited).
offset=INT
Number of records to skip when importing files from the FTP server (default: 0).
overwrite=BOOL
Option to enable overwriting the file specified as PATH, if it exists (default:f).
t: Overwrites the file specified as PATH, if it exists. You cannot set this to t when the append is t.
f: NOT overwrite the file specified as PATH, if it exists. The query fails if the file exists.
Usage
You first need to configure an FTP connect profile (PROFILE) and an Apache weblog parser (httpd) to run this example. You can specify the Apache weblog parser using the following options:
	Parser Name
	Parser Type
	Log Format

	httpd
	Apache Web Log
	%h %l %u %t "%r" %>s %O "%{Referer}i" "%{User-Agent}i"

Parse the wp-nginx.log file and transmit it to the FTP server as a CSV file.
To better understand the format option, try putting (transmit) the file by not specifying the format option or specifying it to json or tsv.
wget url="https://raw.githubusercontent.com/logpresso/dataset/main/wp-nginx.log"
 | eval line = subarray(split(line, "\n"), 0)
 | explode line
 | parse httpd
 | ftp FTP_PROFILE put format=csv overwrite=t
 fields=remote_host,login,user,date,request,status,sent,referer,user_agent
 /opt/logpresso/wp.csv
List directories or files from the FTP server.
ftp PROFILE ls /opt/logpresso
 ftp PROFILE ls /opt/logpresso/wp.*
Each query result field has the following meanings:
type (string): dir when it is a directory, file when it is a file
name (string): Directory or file name
file_size (integer): File size, 0 when it is a directory
owner (string): Owner
group (string): Owned group
modified_at (date): Last modified time
Read the first 5 records of the wp.csv file.
ftp PROFILE cat limit=5 /opt/logpresso/wp.csv
Read the wp.json file into JSON format
ftp PROFILE cat format=json /opt/logpresso/wp.json
hdfs
Allows you to browse HDFS or transmit the input records to the file.
Syntax
hdfs PROFILE SUBCOMMAND [OPTIONS] PATH
Required Parameter
PROFILE
HDFS connect profile. You can configure the profile in the web console.
SUBCOMMAND
Command to be executed in the FTP session: ls, cat, put.
ls: Lists all information about the files in the path specified by PATH.
lsr: Recursively lists all the files in the directory specified by PATH.
cat: Loads the contents of text files, CSV files, JSON files, HDFS sequence, and plain text files in the HDFS file system. It parses according to the file format specified by the format option.
put: Transmits the values of the field specified by the fields option to the HDFS file system.
rm: Removes the file in the path specified in the input record.
PATH
Path to a directory or file. If you use a wildcard (*) int the file name, you can retrieve all files containing a specific string pattern in the file name(e.g. /var/log/httpd/*).
When SUBCOMMAND is ls, you can enter either a directory or a file path.
When SUBCOMMAND is cat, you can enter only the file path.
When SUBCOMMAND is put, you can enter only the file path.
When SUBCOMMAND is rm, the PATH is not required.
Optional Parameter
The options for each SUBCOMMAND are as follows:
	Options
	`cat`
	`put`
	`ls`/`lsr`/`rm`

	append
	-
	O
	-

	compression_type
	-
	O
	-

	fields
	-
	O
	-

	flush
	-
	O
	-

	format
	O
	O
	-

	key_field
	-
	O
	-

	key_type
	-
	O
	-

	limit
	O
	-
	-

	offset
	O
	-
	-

	partition
	-
	O
	-

	value_field
	-
	O
	-

	value_type
	-
	O
	-

append=BOOL
Enables or disables appending data to the end of the file specified in the PATH (default: f).
t: Appends the field records to the end of the file specified as PATH.
f: NOT append the field records to the end of the file specified as PATH. The query fails if the file exists.
compression_type=TYPE
Compression type: either block or record (default: no compression).
block: block-by-block compression
record: record-by-record compression
fields=FIELD,...
Fields to be transmitted to the HDFS server (default: line). Use comma (,) without any leading or trailing whitespaces as a separator. If there is no line field or the specified field is empty, it is replaced with a hyphen symbol (-) in the output to indicate the field is empty.
flush=INT{y|mon|w|d|h|m|s}
Cycle to flush output buffer to the file specified as PATH. You can use one of the cycle units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, to flush the buffer every 5 seconds, specify 5s.
format=FORMAT
File format (csv, json, sequence, tsv).
csv, tsv
When SUBCOMMAND is cat, the first line is considered a regular record. Field name (column header) is assigned in the form columnN (N is a number starting from 0).
When SUBCOMMAND is put, field names (column header) are assigned with the field names specified by the fields option.
json
When SUBCOMMAND is cat, it parses the file into the records of key-value pairs line by line. Field names are specified as keys and field values as values.
When SUBCOMMAND is put, it transmits the records consisting of the key-value pairs of the fields specified by the fields option. If the fields option is not specified, records consisting of all field values are transmitted.
sequence
When SUBCOMMAND is cat, it converts the Writable implementation of HDFS to a Logpresso type (the data type of Java) and reads the file record by record.
The key field is named key. The key is converted to a string regardless of its original type.
When the value field is of type MapWritable, the internal key-value mapping is returned to the field of the returned row. The Hadoop's Writable implementation is converted into a Logpresso type.
When the value field is not a MapWritable type, it outputs the value to the value field.
When SUBCOMMAND is put, it transmits the file in HDFS sequence format unless it falls under the following conditions:
When either key or value of the record is empty, that row is not transmitted.
When the type of value does not match the type specified by the value_type option, string type is converted to a string, and numeric types such as int, long, float, and double are converted to 0, and boolean type to false.
When it can convert the type of value without compromising precision, it converts it to the specified type and outputs (for example, when a long type is specified with the value_type option but an int value comes in, it is converted to a long type and returned).
Not specified (plain text):
When SUBCOMMAND is cat, values are loaded in the line field line by line.
When SUBCOMMAND is put, the file is transmitted in plain text format. Values are separated by tab characters in plain text, and empty values (nulls) are replaced with hyphens (-).
key_type=HDFS_TYPE
HDFS type in the HDFS data conversion type of Logpresso.
key_field=KEY_FIELD
Name of the key field. If you do not set this option, the LongWritable counter, which starts from 1, is used.
limit=INT
Number of records to be output when importing files (default: unlimited).
offset=INT
Number of records to skip when importing files (default: 0)
partition=BOOL
Option to enable macro in the PATH (default: f).
t: Enables macro
f: Disables macro
You can specify PATH to change the directory and file path over time using a macro when partition=t. The available macros are {logtime:FMT} and {now:FMT}.
{logtime:FMT}: Names the directory or file based on the log occurrence time.
{now:FMT}: Names the directory or file based on the current time.
If you set 'partition=t' and do not use a macro on the path, the query fails.
value_type=HDFS_TYPE
HDFS type in the HDFS data conversion type of Logpresso.
value_field=VALUE_FIELD
Name of the value field. If you do not set the name of the value field, all fields are transmitted to a single MapWritable.
Description
Logpresso uses the data types defined by Logpresso, such as Java standard data types and IP addresses. When importing or transmitting data from HDFS, Logpresso performs the conversion operation according to the HDFS data type. For information on converting data by type, refer to the following table.
Logpresso and HDFS data conversion type
	Logpresso type
	HDFS type
	Description

	String
	Text
	String

	Null
	NullWritable
	Null

	Boolean
	BooleanWritable
	Boolean

	Integer
	IntWritable, VIntWritable
	4-byte (32 bits) integer

	Long
	LongWritable, VLongWritable
	8-byte (64 bits) integer

	Float
	FloatWritable
	Single precision real number

	Double
	DoubleWritable
	Double precision real number

Usage
Retrieve the root path file list by accessing the profile of the name vm.
hdfs vm ls /
The output fields are as follows:
type (string): "dir" when it is a directory, "file" when it is a file
name (string): File name
path (string): Absolute path of the file
replication (integer): Number of copies, 0 when it is a directory
file_size (integer): File size, 0 when it is a directory
block_size (integer): Block size, 0 when it is a directory
modified_at (date): Last modified time
permission (string): Permission settings
owner (string): Owner
group (string): Owned group
Read 5 rows after skipping the first line of the /tmp/LICENSE.txt file by accessing the vm profile.
hdfs vm cat offset=1 limit=5 /tmp/LICENSE.txt
Read 3 rows of the /tmp/malware.csv file by accessing the vm profile.
hdfs vm cat format=csv limit=3 /tmp/malware.csv
Read 1 row of the /tmp/iis.json file by accessing the vm profile.
hdfs vm cat format=json limit=1 /tmp/iis.json
Read 2 records of the /tmp/classloading.seq file by accessing the vm profile.
hdfs vm cat format=sequence limit=2 /tmp/classloading.seq
Output only UnloadedClassCount of LoadedClassCount among the JMX class loading logs to the /tmp/class.txt path.
table classloading
 | hdfs vm put fields=UnloadedClassCount,LoadedClassCount /tmp/class.txt
Output the sys_cpu_logs log to the directory under /tmp by date.
table sys_cpu_logs
 | eval
 line=concat("idle: ", idle,
 ", kernel: ", kernel,
 ", user: ", user)
 | hdfs vm put partition=t /tmp/{logtime:yyyyMMdd}/cpu.txt
Output LoadedClassCount, UnloadedClassCount, and TotalLoadedClassCount among the JMX class loading logs.
table classloading
 | hdfs vm put
 format=csv
 fields=LoadedClassCount,UnloadedClassCount,TotalLoadedClassCount
 /tmp/classloading.csv
Output the JMX class loading log as a JSON file.
table classloading | hdfs vm put format=json /tmp/classloading.json
Output the entire JMX class loading log as an HDFS sequence file.
table classloading | hdfs vm put format=sequence /tmp/classloading.seq
Output LoadedClassCount among the JMX class loading logs.
table classloading
 | hdfs vm put
 format=sequence
 value_type=long
 value_field=LoadedClassCount
 /tmp/classloading.seq
mongo
Allows you to browse MongoDB or transmit the input records to the file.
Syntax
mongo PROFILE [database=DB_NAME] SUBCOMMAND
mongo PROFILE [database=DB_NAME] MONGODB_METHOD
Required Parameter
PROFILE
MongoDB connect profile. You can configure the profile in the web console.
SUBCOMMAND
Command to be executed in the MongoDB session: dbs, cols
cols: Lists collections for the database specified by the database=DB_NAME option. If no database is specified, all collections from all databases are shown.
dbs: List all databases in MongoDB. Used alone without any other arguments.
MONGO_METHOD
MongoDB native method. For the collection specified by COL_NAME, it receives an input record or expression as a parameter argument and executes the method.
Optional Parameter
database=DB_NAME
Database on which to run the cols command.
Description
Output fields by SUBCOMMAND
The output fields of the dbs command are:
name: Database name
disk_usage: Disk usage in bytes
empty: true if the database is empty and false otherwise.
The output fields of the cols command are:
name: Collection name
type: Type (collection)
options: Collection configuration options
info: Additional information such as whether it is read-only.
idIndex: _id index specification
MONGO_METHOD
The mongodb command supports the following MongoDB native methods. You can check the usage of each method in MongoDB Reference Manual.
db.COL_NAME.find()
db.COL_NAME.insert()
db.COL_NAME.updateOne()
db.COL_NAME.updateMany()
db.COL_NAME.deleteOne()
db.COL_NAME.deleteMany()
find()
db.COL_NAME.find("FILTER_EXPR", ["PROJECTION_EXPR"])
Selects documents specified by COL_NAME in a collection and returns a cursor to the selected documents.
"FILTER_EXPR"
A JSON expression that specifies search conditions (filters) If you specify it as null, it retrieves all documents.
["PROJECTION_EXPR"]
A JSON expression that specifies the fields to be returned in the documents that match the search condition. If you omit the expression, it returns all fields in the documents that match the search condition. For more information, see "Projection" in MongoDB Documentation.
For information on query operators available in FILTER_EXPR and PROJECTION_EXPR, refer to the "Query and Projection Operators" in the MongoDB Documentation.
insert()
db.COL_NAME.insert()
Inserts a document or documents into a collection specified by COL_NAME. If the document contains an _id value, it is used as a unique identification key (ObjectId). The _id values must be unique. If the document does not specify an _id field, then MongoDB adds a 12-byte hexadecimal unique identification key for the document before inserting. See usage #4, #5.
updateOne()
db.COL_NAME.updateOne("KEY", "UPDATE")
Searches the collection specified by COL_NAME with the value of the KEY field and modifies the value of the UPDATE field in the first document returned in the collection. See usage #6.
When using the _id field as KEY, if the unique identifier is an automatically generated 12-digit binary, the _id value MUST be set to the binary type.
updateMany()
db.COL_NAME.updateMany("KEY_LIST", "UPDATE_LIST")
Searches the collection specified by COL_NAME with the value of the KEY_LIST field and modifies the value of the UPDATE_LIST field in all the documents returned. Both KEY_LIST and UPDATE_LIST use a comma (,) as a separator. Unlike the db.COL_NAME.updateOne() method, this modifies all searched documents.
deleteOne()
db.COL_NAME.deleteOne("KEY")
Searches the collection specified by COL_NAME with the value of the KEY field and deletes the first document returned in the collection.
When using the _id field as KEY, if the unique identifier is an automatically generated 12-digit binary, the _id value MUST be set to the binary type.
deleteMany()
db.COL_NAME.deleteMany("KEY_LIST")
Searches the collection specified by COL_NAME with the value of the KEY_LIST field and removes all documents. KEY_LIST uses a comma (,) as a separator.
Usage
Retrieve all documents in the inventory collection.
mongo PROFILE db.inventory.find()
Retrieve documents with 3 or more stars from the restaurants collection.
mongo PROFILE db.restaurants.find("{stars: {$gte: 3}}")
Output only the name and stars fields from the restaurants collection.
mongo PROFILE db.restaurants.find(null, "{name: true, stars: true}")
Provide an arbitrary JSON document into the MongoDB restaurants collection.
json "{
 name: Café Con Leche,
 contact: {
 phone: 228-555-0149,
 email: cafeconleche@example.com,
 location: [-73.92502, 40.8279556]
 },
 stars:3,
 categories: [Bakery, Coffee, Pastries]
 }"
 | mongo PROFILE db.restaurants.insert()
Provide the lastest 10 items of the Logpresso inventory table into the MongoDB inventory collection.
table limit=10 inventory
 | mongo PROFILE db.inventory.insert()
Search the restaurants collection based on the name field and modify the stars value.
json "{}"
 | eval name="Café Con Leche", stars=4
 | mongo PROFILE db.restaurants.updateOne("name", "stars")
Search 1 document with an ObjectId of 5982df1b7098262f64d4ffaf and then delete it.
json "{}"
 | eval _id = fromhex("5982df1b7098262f64d4ffaf")
 | mongo stream2 db.restaurants.deleteOne("_id")
rss
Receives and outputs the feeds in the form of RSS1, RSS2, and ATOM through HTTP communication.
Syntax
rss [strip=BOOL] url="FEED_URL"
Required Parameter
url="FEED_URL"
URL of the RSS feed.
Optional Parameter
strip=BOOL
Option to strip HTML tags in the RSS feed (default: f).
t: Strips HTML tags.
f: NOT strip HTML tags.
Description
If you load the RSS feed, the command outputs the following fields for each record.
guid: Identifier
author: Author
title: Title
content: Body
link: URL link
source: Source
created_at: Creation time
Usage
Load RSS feed.
rss url="http://rss.slashdot.org/Slashdot/slashdotMain" strip=t
sftp
Allows you to browse the file system on the SFTP server or transmit the input records to the file.
Syntax
sftp PROFILE SUBCOMMAND [OPTIONS] PATH
Required Parameter
PROFILE
SFTP connect profile. You can configure the profile in the web console.
SUBCOMMAND
Command to be executed in the sftp session: ls, cat, put
ls: Lists the files in the path specified by PATH on the server.
cat: Loads the content of the file in the path specified by PATH from the server and assigns it in the line field.
put: Transmits the records ​​of the fields specified by the fields option to the SFTP server as a file. The file is created in the path specified by PATH.
PATH
Path to a directory or file. If you use a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. /var/log/httpd/*).
When SUBCOMMAND is ls, you can enter either a directory or a file path.
When SUBCOMMAND is cat, you can enter only the file path.
When SUBCOMMAND is put, you can enter only the file path.
Optional Parameter
The options for each SUBCOMMAND are as follows:
	Options
	`cat`
	`put`
	`ls`

	append
	O
	-
	-

	encoding
	O
	O
	-

	fields
	-
	O
	-

	format
	O
	O
	-

	limit
	O
	-
	-

	maxsession
	-
	O
	-

	multisession
	-
	O
	-

	offset
	O
	-
	-

	overwrite
	-
	O
	-

	partition
	-
	O
	-

append=BOOL
Option to enable appending data to the end of the file specified as PATH (default: f).
t: Appends the field records to the end of the file specified as PATH. If the file does not exist, the file is created. You cannot set this option to t when the overwrite=t.
f: NOT append the field records to the end of the file specified as PATH. The query fails if the file exists.
When 'append=t', always keep the list order of the 'fields' option the same so that data can be consistent.
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: https://www.iana.org/assignments/character-sets/character-sets.xhtml
fields=FIELD,...
Fields to be transmitted to the FTP server (default: line). Use comma (,) without any leading or trailing whitespaces as a separator. If there is no line field or the specified field is empty, it is replaced with a hyphen symbol (-) in the output to indicate the field is empty.
format=FORMAT
File format (csv, json, tsv, default: plain text).
csv or tsv
When SUBCOMMAND is cat, the first line is considered a regular record. Field name (column header) is assigned in the form columnN (N is a number starting from 0)
When SUBCOMMAND is put, field names (column header) are assigned with the field names specified by the fields option.
json
When SUBCOMMAND is cat, it parses the file into the records of key-value pairs line by line. The keys are used as field names, and the values are used as field values.
When SUBCOMMAND is put, it transmits the records consisting of the key-value pairs of the fields specified by the fields option. If the fields option is not specified, records consisting of all field values are transmitted.
Not specified (plain text)
When SUBCOMMAND is cat, it loades the values to the line field line by line.
When SUBCOMMAND is put, it transmits the file in a text format. Values are separated by tab characters in plain text, and empty values (nulls) are replaced with hyphens (-).
limit=INT
Number of records to be output when importing files from the SFTP server (default: unlimited).
maxsession=INT
Maximum number of sessions when multisession=t (default: 1). If you specify this option without checking whether to use multi-session, the query fails. No matter how large the number is, as many sessions are opened as the number of MaxSessions specified in the sshd_config file.
multisession=BOOL
Option to enable multi-session (default: f). Enable this option after testing because it takes longer to open additional sessions and may result in lower performance than not using it.
t: Enables multi-session.
f: Disables multi-session.
offset=INT
Number of rows you want to skip when importing files from the SFTP server (default: 0).
overwrite=BOOL
Option to enable overwriting the file specified as PATH, if it exists (default: f).
t: Overwrites the file specified as PATH, if it exists. You cannot set this option to t when the append=t.
f: NOT overwrite the file specified as PATH, if it exists. The query fails if the file exists.
partition=BOOL
Option to enable macro in the PATH (default: f).
t: Enables macro.
f: Disables macro.
You can specify PATH to change the directory and file path over time using a macro when partition=t. The available macros are {logtime:FMT} and {now:FMT}. For input examples, refer to Usage #6.
{logtime:FMT}: Names the directory or file based on the log occurrence time.
{now:FMT}: Names the directory or file based on the current time.
If you specify a partition option and do not use a macro on the path, the query fails.
Usage
Retrieve remote directory files by accessing SSH with an srv profile.
sftp srv ls /
Each query result field has the following meanings:
type (string): dir when it is a directory, file when it is a file
is_link (boolean): Whether it is a symbolic link
name (string): File name
file_size (integer): File size, 0 when it is a directory
modified_at (date): Last modified time
uid (integer): Owner ID
gid (integer): Owned group ID
perms (string): File permission information
Read the first 5 rows of the /logpresso.sh file by accessing the srv profile.
sftp srv cat limit=5 /logpresso.sh
Output only UnloadedClassCount of LoadedClassCount among the JMX class loading logs to the /tmp/class.txt file.
table classloading
 | sftp srv put
 fields=UnloadedClassCount,LoadedClassCount
 /tmp/class.txt
Output the JMX class loading log to the /tmp/class.json file.
table classloading | sftp srv put format=json /tmp/class.json
Output LoadedClassCount, UnloadedClassCount, and TotalLoadedClassCount among the JMX class loading logs to the /tmp/class.csv file.
table classloading
 | sftp srv put
 format=csv
 fields=LoadedClassCount,UnloadedClassCount,TotalLoadedClassCount
 /tmp/class.csv
Output the LoadedClassCount, UnloadedClassCount, and TotalLoadedClassCount items among the JMX class loading logs to a JSON file. As the file is stored, the year, month and day based on the log time are used as the name of the directory (yyyy/MM/dd) and the hour and minute based on the current time are used as the name of the file (HHmm)
table classloading
 | sftp srv put
 format=json
 partition=t
 fields=LoadedClassCount,UnloadedClassCount,TotalLoadedClassCount
 {logtime:/yyyy/MM/dd/}{now:HHmm}.txt
wget
Receives web resources through HTTP communication, or assigns the received data to the line field and the HTTP code of the server to the _wget_code field.
Syntax
wget [auth="ID:PASSWD"] [body=FIELD] [encoding=CHARSET] [format={form|json|xml}] [header=FIELD_MAP_TYPE] [method={delete|get|post|put}] [selector="CSS_SELECTOR"] [timeout=NUM] [url="SITE_URL"]
Optional Parameter
auth="ID:PASSWD"
Basic HTTP authentication information for HTTP access. For details, refer to the following link: https://datatracker.ietf.org/doc/html/rfc7617
body=FIELD
Fields to be used as the HTML body. Use with method=post or method=put.
encoding=CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: https://www.iana.org/assignments/character-sets/character-sets.xhtml
format=FORMAT
Message format from form, json, and xml (default: form). This can be used for REST API call.
header=FIELD_MAP_TYPE
Map type field consisting of a key-value as an HTTP header. It transmits only values that key and value are both string types. You can also specify a key-value map using the dict() function. See usage #2.
method=HTTP_METHOD
HTTP method from get, post, put, delete (default: get).
The post method has the following characteristics.
It transmits the key-value of the input record in the form of x-www-form-urlencoded using URL encoding.
It cannot be used with the url option, so use the header option to provide the HTTP header directly.
selector="CSS_SELECTOR"
Elements to be selected from the HTML DOM tree. The same syntax is used when defining a selector in CSS.
timeout=INT
HTTP connection timeout time in seconds (default: 30).
url="SITE_URL"
Web service URL to connect to. The command transmits the HTTP request to the specified web address and receives a HTTP response.
Usage
Load the RSS feed title.
wget url="https://logpresso.com/feed/" selector="item title"
 | explode elements
 | eval title = valueof(elements, "own_text")
 | fields title
Check IP reputations from AbuseIPDB.
 json "{}"
 | eval ip = "118.25.6.39"
 | eval headers = dict("Key", "YOUR_API_KEY", "Accept", "application/json")
 | eval url = concat("https://api.abuseipdb.com/api/v2/check?ipAddress=", ip, "&maxAgeInDays=90")
 | wget method=get header=headers
 | parsejson
 | parsemap field=data
Report IP addresses to AbuseIPDB.
 json "{}"
 | eval ip = "47.236.18.74", categories=14, comment = "Port scanning (count: 2790)"
 | eval headers = dict("Key", "YOUR_API_KEY", "Accept", "application/json")
 | eval url = concat("https://api.abuseipdb.com/api/v2/report")
 | wget method=post header=headers
Sonar Commands
Events
alert
Creates a Sonar event using the input record.
Syntax
alert
Description
This command is available only on the control node and can only be used by the cluster administrator. Basically, you can use it by setting up the alert command in a stream query that receives the event to be transmitted to the control node after real-time rule detection from each data node.
If a duplicate event is received, it may be removed due to the event deduplication setting of the real-time scenario. In addition, a ticket may be created or merged into an existing ticket depending on the real-time scenario settings. You can retrieve the created event in the event menu.
The input record must meet the following specifications:
	Field
	Required
	Type
	Description

	_logger
	Yes
	32-bit integer
	Logger ID identifier

	_rule
	Yes
	32-bit integer
	Real-time scenario ID identifier

	_time
	No
	Date/Time
	Time at which the original event occurred. If there is no value or the type does not match, it is treated as the time at which the input is made.

	emp_key
	No
	String
	Employee number

	emp_name
	No
	String
	Employee name

	host_ip
	No
	IP Address
	Host IP address

	src_ip
	No
	IP Address
	Source IP address

	src_country
	No
	String
	Source ISO country code

	src_port
	No
	32-bit integer
	Source port number

	dst_ip
	No
	IP Address
	Destination IP address

	dst_country
	No
	String
	Destination ISO country code

	dst_port
	No
	32-bit integer
	Destination port number

	protocol
	No
	String
	Protocol

	action
	No
	String
	Response method

event
Retrieves events based on scenarios provided in Logpresso Sonar.
Syntax
event [duration=INT{mon|w|d|h|m|s}] [from=yyyyMMddHHmmss] [to=yyyyMMddHHmmss] [order=STR] [raw=BOOL]
Parameters
If you do not use duration, from or to, all events are searched.
duration=INT{mon|w|d|h|m|s}
Time range to search the previous data based on the current time. You can specify the time in units of mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, 10s refers to "the last 10 seconds" based on the time the query is executed. This option cannot be used with from or to.
from=yyyyMMddHHmmss
Start date and time of the period to search in the form of yyyyMMddHHmmss. The time period for the search includes the specified time point. If you provide only the first part, the remaining digits are recognized as 0. For example, if you provide 20130605, it is recognized as 20130605000000 (June 5, 2013, 00:00:00).to=yyyyMMddHHmmss
to=yyyyMMddHHmmss
End date and time of the period to serch in the form of yyyyMMddHHmmss. The time period for the search does NOT include the specified time point.
order=STR
Sorting order of the records (default: desc).
asc: Sorts in ascending order, the oldest at the top.
desc: Sortes in descending order, the latest records at the top.
raw=BOOL
Whether to retrieve the original event log (default: f).
t: Retrieves event information as the original event log.
f: Retrieves only normalized event informations.
Description
When raw=f, this query command retrieves only normalized event information. When raw=t, it retrieves event information as the original. A single event can be mapped with multiple original event logs so the number of normalized event may differ from the number of the original event log. Event information on the Ticket page is the same of the result of running this query command with raw=t.
The output fields of when running the event query command vary depending on the fields of the original evnet log because each event log has different default fields, or MariaDB database columnm. The _time field of original log is converted to _log_time field.
Usage
Retrieve events occurred from May 23, 2023 00:00:00 to May 23, 2023 23:59:59.
event from=20230523 to=20230524
Assets
sonar-set-ip-address
Synchronizes specified field values from an input record to the internal IP asset database.
Syntax
sonar-set-ip-address fields=FIELDS [batchsize=INT] [company=GUID]
Parameters
fields=FIELDS
List of fields to be synchronized, separated by a comma with a following space. See the Input Fields below for a detailed description.
Input Fields
	Field
	Name
	Type
	Length
	Description

	priority
	Priority
	32-bit Integer
	
	3 (High), 2 (Medium), 1 (Low)

	category_name
	Device type
	String
	255 char.
	Uncategorized if names are not matched

	hostname
	Host name
	String
	255 char.
	Computer name or host name

	workgroup
	Work group
	String
	255 char.
	NT domain or work group

	emp_key
	Admin(MAIN) employee key
	String
	255 char.
	Input ignored if keys not matched

	emp_key2
	Admin(SUB) employee key
	String
	255 char.
	Input ignored if keys not matched

	description
	Description
	String
	2000 char.
	

	os_name
	OS
	String
	50 char.
	

	os_ver
	OS version
	String
	20 char.
	

	mac
	MAC address
	String
	20 char.
	

	location
	Install location
	String
	255 char.
	

	installed
	Install date
	Date
	
	

	ext0
	Extended field #0
	String
	255 char.
	

	ext1
	Extended field #1
	String
	255 char.
	

	ext2
	Extended field #2
	String
	255 char.
	

	ext3
	Extended field #3
	String
	255 char.
	

	ext4
	Extended field #4
	String
	255 char.
	

	ext5
	Extended field #5
	String
	255 char.
	

	ext6
	Extended field #6
	String
	255 char.
	

	ext7
	Extended field #7
	String
	255 char.
	

	ext8
	Extended field #8
	String
	255 char.
	

	ext9
	Extended field #9
	String
	255 char.
	

category_name: The device type is labeled as 'Uncategorized' if the device type value from the input record does not match the device type value in the database.
emp_key, emp_key2: The input is ignored if the employee key value in the input record does not match the employee key value in the database.
You can customize the IP asset database by applying global setting on sonar as follows:
 logpresso> sonar.setGlobalOption ip_custom_fields "0=Manufacturer,1=Model name"
batchsize=INT
Number of records to process per commit. The valid range for INT is from 1 to 5000. Specifying this parameter is particulaly useful when processing a large amount of IP address data, as it improves by reducing the number of transactions. However, if an error occurs during synchronization, the process fails for the entire batch.
company=COMPANY
Company (tenant) GUID identifier. If not specified, the GUID of the the company assigned to the user account is used as default. When running a query in a system account, you must specify the tenant GUID using this option.
Description
This command matches the ip field value from the input record to the IP values in the database. If a match is found, the corresponding object in the database is updated for the field values specified by the 'fields' option. If no match is found, a new entry is added to the database.
Input record must contain a valid IP address value in the ip field. The ip value can be either a string or an IP address. If any value of other type is provided, the synchronization fails and an invalid ip error code is generated to the _error field. When the ip value is null, an ip is null error code is output to the _error field.
When the fields option is used, any field that does not exist in the input record will be assigned a null value in the database. On the other hand, When the fields option is not specified, the field values will not be synced, even if the input record contains fields with the same names.
Output Fields
This query command returns all fields from the input record as is. If any error occurs, this query command returns an _error field in addition to the fields from input record.
	Field
	Type
	Description

	_error
	String
	Error description

Usage
Sync the Genian NAC asset data to the internal IP asset database.
The following example is using the app-extended command genian-nac-nodes. Users can synchronize the entire Genian NAC IP asset information to the Logpresso Sonar IP asset database.
genian-nac-nodes
 | rename nt_domain as workgroup, first_seen as installed, platform as os_name, nic_vendor as ext0, type as category_name
 | eval priority = if(category_name != "PC", 2, 1)
 | sonar-set-ip-address batchsize=10 fields="priority, category_name, hostname, workgroup, emp_key, emp_key2, description, os_name, os_ver, mac, location, installed, ext0"
Datasets
dataset
Loads the dataset corresponding to the specified GUID. Queries can be executed only by the cluster administrator, the account with company administrative privileges, and the account that owns the corresponding dataset.
Syntax
dataset guid=DATASET_GUID
guid=DATASET_GUID
Identifier generated upon dataset creation.
Usage
Load a specific dataset.
dataset guid=ac7c717e-86c3-482b-a08f-7b4a572cec79
Threat Intelligence
matchfeed
Filters the input records using the threat intelligence feed from the Logpresso CTI.
Syntax
matchfeed name=FEED_ID|type=TYPE fields=FIELD,... [invert=BOOL]
Required Parameter
name=FEED_ID
The identifier of the threat intelligence feed to match against the field record specified by the fields option (default: none). The name=FEED_ID and type=TYPE options cannot be used at the same time. Use either one.
See the following table for available identifiers. In addition, you can use the feeds provided by apps installed on Lopresso Sonar.
	FEED_ID
	Type
	Description

	otx
	ip
	Real-time IP address reputation feed in the format of OTX (Open Threat Exchange)

	tor
	ip
	Tor exit node IP address information feed

	mdl_domain
	domain
	Malicious domain name (e.g. C&C domain) feed

	mdl_ip
	ip
	Malicious domain name (e.g. C&C IP address) feed

	abusech
	domain
	Malicious domain name (e.g. C&C domain) feed provided by abuse.ch

	malc0de
	md5
	Malware database provided by malc0de.com

type=TYPE
The type of value to match against the threat intelligence feed. Valid values are domain, email, ip, md5, sha256, and url. The type option matches against all threat intelligence feeds with that type information. The name=FEED_ID and type=TYPE options cannot be used at the same time. Use either one.
domain: Domain name
email: Email address
ip: IP address
md5: MD5 hash of the binary file
sha256: SHA256 hash of the binary file
url: URL
fields=FIELD,...
Fields to match values against threat intelligence feeds. Use comma (,) without any leading or trailing whitespaces as a separator.
Optional Parameter
invert=BOOL
Option to invert the result of matching the value specified by the fields option against the threat intelligence feed (default: f)
t: Returns records that do not contain the value specified by fields in the matching result.
f: Returns records that contain the value specified by fields in the matching result.
Description
Refer to the following table for the fields to be returned after executing the command and the feed identifiers.
	Field
	Type
	Description

	feed_name
	String
	Threat intelligence feed identifier

	feed_field
	String
	The name of the field where threat information was found

	feed_invert
	Boolean
	The value of the invert option

node-feed
Loads the threat intelligence data synchronized with the control node in the data node. This command is available only in the data node.
Syntax
node-feed name=FEED_ID
Required Parameter
name=FEED_ID
Identifier of the threat intelligence feed to query for synchronization. The name=FEED_ID and type=TYPE options cannot be used at the same time. Use either one.
See the following table for available identifiers.
	FEED_ID
	Type
	Description

	otx
	IP address
	Real-time IP address reputation feed in the format of OTX (Open Threat Exchange)

	tor
	IP address
	Tor exit node IP address information feed

	mdl_domain
	Domain
	Malicious domain name (e.g. C&C domain) feed

	mdl_ip
	IP address
	Malicious domain name (e.g. C&C IP address) feed

	abusech
	Domain
	Malicious domain name (e.g. C&C domain) feed provided by abuse.ch

	malc0de
	MD5
	Malware database provided by malc0de.com

Usage
Look up OTX feeds synchronized in the data node.
node-feed name=otx
Look up malware IP lists synchronized in the data node.
node-feed name=mdl_ip
Behavior Profiles
behavior
Loads the latest data created according to the behavior profile settings. This command is only available for the control node where the behavior profile data is located.
Syntax
behavior [OPTIONS] guid=PROFILE_GUID
Required Parameter
guid=PROFILE_GUID
GUID of behavior profile
Optional Parameter
from=yyyyMMddHHmmss
Start date and time of the search period in the form of yyyyMMddHHmmss (default: none). The time period for the search includes the specified time point. If you provide only the first part, the command recognizes the remaining digits as 0. For example, if you provide 20130605, the command recognizes it as 20130605000000 (June 5, 2013, 00:00:00).
to=yyyyMMddHHmmss
End date and time of the search period in the form of yyyyMMddHHmmss (default: none). The time period for the search does not include the specified time point. The input format is the same as from.
Description
The behavior command loads the latest data created according to the behavior profile settings. You can use it for ad-hoc analysis or for the correlation by joining when detecting batch scenarios. A read lock is set on the behavior profile specified as the GUID while the command is being executed.
matchbehavior
Matches a behavior profile based on the key fields set in the behavior profile and adds the value field of the searched record to the output record.
Syntax
matchbehavior [invert=BOOL] [verify=BOOL] guid=PROFILE_GUID
Required Parameter
guid=PROFILE_GUID
GUID of behavior profile.
Optional Parameter
invert=BOOL
boolean option to output the value field (default: f)
t: Outputs the records only if the reference key is not included in the behavior profile.
f: Outputs the records only if the reference key is included in the behavior profile.
verify=BOOL
Boolean option to activate the validation for the behavior profile object at the query parsing stage (default: t).
t: validates the behavior profile object at the query parsing stage.
f: NOT validate the behavior profile object at the query parsing stage. This option prevents the system from issuing syntax errors at the policy synchronization stage.
Description
The matchbehavior command matches a behavior profile based on the key fields set in the behavior profile and then adds the value field of the searched record to the output record. Only string or IP address types are allowed in key fields in the behavior profile. Other types are considered match failures. If the invert option is activated, the command returns output only if the behavior profile match based on the key field fails.
For the output fields, refer to the following table.
	Field
	Type
	Description

	behavior_guid
	String
	Behavior profile GUID

	behavior_invert
	Boolean
	invert option value

node-behavior
Loads behavior profile data synchronized with the control node in the data node. This command is available only in the data node.
Syntax
node-behavior [guid=PROFILE_GUID]
Optional Parameter
guid=PROFILE_GUID
Behavior profile GUID. If you do not specify an identifier, the command loads a list of synchronized behavior profiles.
If you do not specify the behavior profile GUID, the command returns the following values as shown in the table.
	Field
	Type
	Description

	id
	Integer
	Integer identifier

	guid
	String
	Behavior profile GUID

	name
	String
	Behavior profile name

	description
	String
	Behavior profile description

	row
	Integer
	Number of items in the behavior profile

	curr_ver
	Integer
	Current version number

	company_guid
	String
	Company GUID

	company_name
	String
	Company name

	schedule
	String
	Creation cycle of behavior profile data (CRON format)

	key_fields
	Array
	List of behavior profile key fields (name, type)

	query
	String
	Behavior profile recreation query

	created
	String
	Creation time of the behavior profile

	updated
	String
	Last modification time of the behavior profile

Usage
Load the list of behavior profiles synchronized on the data node.
node-behavior
Load the specific behavior profile data synchronized on the data node.
node-behavior guid=c0a8c07f-34e3-48ca-a91c-5bb35684ae79
Address Groups
matchblackip
Filters the input records using the given IP blacklist.
Syntax
matchblackip [invert=BOOL] [verify=BOOL] fields=TARGET_FIELD guid=BLACKLIST_GUID
Required Parameter
guid=BLACKLIST_GUID
IP blacklist GUID
fields=TARGET_FIELD
Fields to match values against IP blacklist. Use comma (,) without any leading or trailing whitespaces as a separator.
invert=BOOL
Option to invert the result of matching the value specified by the fields option against the IP blacklist (default: f).
t: Returns records that do not contain the value specified by fields in the matching result.
f: Returns records that contain the value specified by fields in the matching result.
verify=BOOL
Option to activate the validation for the IP blacklist at the query parsing stage (default: t).
t: validates the IP blacklist at the query parsing stage.
f: NOT validate the IP blacklist at the query parsing stage. This option prevents the system from issuing syntax errors at the policy synchronization stage.
Description
The output fields are as follows:
	Field
	Type
	Description

	blackip_guid
	String
	IP blacklist GUID

	blackip_name
	String
	IP blacklist name

	blackip_field
	String
	Black IP discovery field name

	blackip_invert
	Boolean
	invert option value

node-ip-blacklist
Loads the IP blacklist item of the identifier synchronized with the control node in the data node. This command is available only in the data node.
Syntax
node-ip-blacklist [guid=BLACKLIST_GUID]
Optional Parameter
guid=BLACKLIST_GUID
IP blacklist GUID. If you specify an identifier, the command loads the IP blacklist item of the corresponding identifier synchronized with the control node in the data node. If you do not, the command loads a synchronized IP blacklists.
Description
The output fields of when the IP blacklist GUID is specified are as follows:
	Field
	Type
	Description

	ip
	IP address
	IP address in the corresponding blacklist

	description
	String
	Reason why the IP is blacklisted

The output fields of when the IP blacklist GUID is not specified are as follows:
	Field
	Type
	Description

	id
	Integer
	Integer identifier

	guid
	String
	IP blacklist GUID

	name
	String
	IP blacklist name

	description
	String
	IP blacklist description

	count
	Integer
	Number of IP addresses in the IP blacklist

	version
	Integer
	IP blacklist version

	company_guid
	String
	Company GUID

	company_name
	String
	Company name

	created
	String
	Createion time of the IP blacklist

	updated
	String
	Last modification time of the IP blacklist

Usage
Load the list of IP blacklists synchronized on the data node.
node-ip-blacklist
Load the specific IP blacklist items synchronized on the data node.
node-ip-blacklist guid=efd0c9cf-8582-4d5a-938d-9bb6a990579c
Subnet Groups
matchnet
Checks whether the IP address value of the field is included in the specified IP subnet and returns the result.
Syntax
matchnet [OPTIONS] field=TARGET_FIELD guid=NET_GUID [tag=BOOL]
tag option is supported since 4.0.2312.0 version.
Required Parameter
field=FIELD
Target field name. The value of the target field must be an IPv4 address, a string, or a 32-bit integer type. Any other key value is considered a search failure. In the case of string and 32-bit integer type values, the command attempts to search only when these are converted to valid IPv4 addresses.
guid=NET_GUID
IP subnet GUID
Optional Parameter
invert=BOOL
Option to invert the result of matching the value specified by the field option against the IP subnet (default: f)
t: Returns records that do not contain the value specified by the field option in the matching result.
f: Returns records that contain the value specified by the field option in the matching result.
verify=BOOL
Option to activate the validation for the IP subnet at the query parsing stage (default: t).
t: validates the IP subnet at the query parsing stage.
f: Does not validate the IP subnet at the query parsing stage. This option prevents the system from issuing syntax errors at the policy synchronization stage.
tag=BOOL
Option to output information about the matched IP subnet (default: f).
t: Outputs a map including id, start_ip, end_ip, cidr attributes in the _matchnet_result field.
f: Does not output _matchnet_result field.
node-subnet-group
Loads IP address range items synchronized with the control node in the data node. This command is only available in the data node.
Syntax
node-subnet-group [guid=NET_GUID]
Optional Parameter
guid=NET_GUID
IP subnet GUID. If you specify the GUID, the result displays the IP subnet corresponding to the specified GUID. If you do not specify the GUID, the command displays a list of all IP subnets synchronized to the data nodes.
Description
The output fields of when the GUID is specified are as follows:
	Field
	Type
	Description

	start_ip
	IP address
	IPv4 address (when the object type is single), network address (when the object type is CIDR), and the first IP address of the IP subnet (when the object type is range).

	end_ip
	IP address
	the last IP address of the IP subnet when object type is range.

	cidr
	Integer
	CIDR subnet mask between 0 and 32

	description
	String
	Description

The output fields of when the GUID is not specified are as follows:
	Field
	Type
	Description

	id
	Integer
	Integer indentifier

	guid
	String
	IP subnet GUID

	name
	String
	IP subnet name

	description
	String
	IP subnet description

	subnet_count
	Integer
	Number of items in the IP subnet

	company_guid
	String
	Company GUID

	company_name
	String
	Company name

	user_name
	String
	Account name

	user_guid
	String
	Account GUID

Usage
Load the list of IP address ranges synchronized on the data node.
node-subnet-group
Load specific IP address range items synchronized on the data node.
node-subnet-group guid=96f342ee-0aa2-4234-ac7c-37a50c38b7bc
Port Groups
matchport
Checks whether a specified port group contains the value of the port field and outputs the result.
Syntax
matchport [invert=BOOL] [port=PORT_FIELD] [protocol=PROTO_FIELD] [verify=BOOL] guid=PORTS_GUID
Required Parameter
guid=PORT_GUID
Port group GUID
Optional Parameter
invert=BOOL
Option to invert the output condition (default: f)
t: returns the result only when the value of the port field is not included in the port group specified with guid.
f: returns the result only when the value of the port field is included in the port group specified with guid.
port=PORT_FIELD
Name of the port field (default: port)
protocol=PROTO_FIELD
Name of the protocol field (default: protocol)
verify=BOOL
Option to activate the validation for the port group at the query parsing stage (default: t).
t: validates the port group at the query parsing stage.
f: NOT validate the port group at the query parsing stage. This option prevents the system from issuing syntax errors at the policy synchronization stage.
node-port-group
Loads port group items synchronized with the control node in the data node. The command is only available in the data node.
Syntax
node-port-group [guid=PORT_GUID]
Optional Parameter
guid=PORT_GUID
Port group GUID. If you specify the GUID, the command displays the port group information corresponding to the specified GUID. If you do not, the command displays a list of all port groups synchronized to the data nodes.
Description
The output fields of when the port group GUID is specified are as follows:
	Fields
	Type
	Description

	protocol
	String
	Protocol TCP or UDP

	start
	Integer
	Port range start value

	end
	Integer
	Port range end value

	description
	String
	Description

The output fields of when the port group GUID is not specified are as follows:
	Fields
	Type
	Description

	id
	Integer
	Integer identifier

	guid
	String
	Port group GUID

	name
	String
	Port group name

	description
	String
	Port group description

	port_count
	Integer
	Number of items in the port group

	company_guid
	String
	Company GUID

	company_name
	String
	Company name

	user_name
	String
	Account name

	user_guid
	String
	Account GUID

	created_at
	String
	Creation time of the port group

	updated_at
	String
	Last modification time of the port group

Usage
Load the list of port groups synchronized on the data node.
node-port-group
Load specific port group items synchronized on the data node.
node-port-group guid=2da1fa00-da63-4fb5-a443-46260c555697
Pattern Groups
matchsig
Checks whether the string value of the field is included in the specified pattern group and outputs the result.
Syntax
matchsig [invert=BOOL] [verify=BOOL] guid=SIG_GUID field=FIELD
Required Parameter
guid=SIG_GUID
Pattern group GUID
field=FIELD
Target field name. The value of the target field must be a string, and any other key value is considered a search failure.
Optional Parameter
invert=BOOL
Option to invert the result of matching the value specified by the field option against the parttern group (default: f).
t: Returns the result only if the value of the target field is not included in the pattern group.
f: Returns the result if the string value of the target field matches at least one of the patterns in the specified pattern group.
verify=BOOL
Option to activate the validation for the port group at the query parsing stage (default: t).
t: validates the pattern group at the query parsing stage.
f: NOT validate the pattern group at the query parsing stage. This option prevents the system from issuing syntax errors at the policy synchronization stage.
Description
The pattern group uses the Aho-Corasick algorithm to test thousands of keywords or more simultaneously, like network intrusion detection devices. By first matching all keywords belonging to the pattern group against the input string at once and then executing the filter expression of the selected patterns sequentially, the command eventually returns the rule name that matches the pattern.
Example of patterns
	expr (required)
	expr2 (optional)
	rule (required)

	Keyword pattern: Primary high-speed detection
	Boolean expression: Secondary filtering
	Pattern name

	"addextendedproc" and "xp_cmdshell"
	
	xp_cmdshell

	"REMOTE_ADDR" and ("fputs" or "fwrite")
	path == "lib.php"
	zb now_connect

For example, if you set pattern "REMOTE_ADDR" and ("fputs" or "fwrite"), filter expression path == "lib.php", rule zb now connect, the command checks whether the REMOTE_ADDR string and the fputs or fwirte string are searched at the same time in the target field value, and then checks whether the path field value matches the lib.php string.
node-pattern-group
Retreives pattern group items synchronized with the control node in the data node. This command is only available in the data node.
Syntax
node-pattern-group [guid=SIG_GUID]
Optional Parameter
guid=SIG_GUID
GUID of the pattern group. If you specify the GUID, the command displays the pattern group information corresponding to the specified GUID. If you do not specify the GUID, the command displays a list of all pattern groups synchronized to the data nodes.
Description
The output fields of when the pattern group GUID is specified are as follows:
	Field
	Type
	Description

	expr
	String
	A boolean combination of keywords for Aho-Corasick multi-pattern matching

	expr2
	String
	Secondary inspection expression after expr matching

	rule
	String
	Pattern name (name to be tagged in the output when matching)

The output fields of when the pattern group GUID is not specified are as follows:
	Field
	Type
	Description

	id
	Integer
	Integer identifier

	guid
	String
	Pattern group GUID

	name
	String
	Pattern group name

	description
	String
	Pattern group description

	pattern_count
	Integer
	Number of items in the pattern group

	company_guid
	String
	Company GUID

	company_name
	String
	Company name

	user_name
	String
	Account name

	user_guid
	String
	Account GUID

Usage
Load the list of pattern groups synchronized on the data node.
node-pattern-group
Retrieve specific pattern group items synchronized on the data node.
node-pattern-group guid=b5ce2e95-67b9-4d64-8f6e-2746264a58d2
Forensic Commands
Windows Artifacts
evtx-file
Retrieves information such as the event channel, event provider, event ID, event operation and the like from an EVTX Windows event log file.
Syntax
evtx-file [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the Windows event log file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\evtx*.evtx). If you provided the zippath option, input the EVTX file path in the zip file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath
Path to the ZIP file.
Description
The output fields are as follows:
	Field
	Type
	Description

	_time
	Date
	Time at which the event occurred

	computer
	String
	Computer name

	channel
	String
	Event channel

	provider
	String
	Event provider

	event_id
	Integer
	Event ID

	task
	Integer
	Event task

	level
	Integer
	Event level

	record_id
	Integer
	Recored ID

	msg
	String
	Event message

	event_data
	Map
	Event data

Usage
Retrieve information by providing the file path.
evtx-file D:\data\evtx\System.evtx
Retrieve information when the zippath option is provided.
evtx-file zippath=D:\data\evtx.zip evtx\System.evtx
Retrieve an event whose event provider is MySQL.
evtx-file D:\data\evtx\application.evtx
 | search provider=="MySQL"
Retrieve events that do not match the EVTX_WHITE message pattern.
evtx-file D:\data\evtx\application.evtx
 | mpsearch msg [lookuptable EVTX_WHITE]
 | search len(_mp_result) == 0
hive-file
Retrieves information such as the account and group, security policy, OS information, USB device, and program usage history from a registry hive file.
Syntax
hive-file [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry hive file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\registry*). If you provided the zippath option, input the registry hive file path in the ZIP file. There are five registry hive files.
	File
	Purpose
	Registry Path
	Extraction Information

	SAM
	Account and access records
	HKEY_LOCAL_MACHINE\SAM
	Account and group

	SECURITY
	Security policy and privilege
	HKEY_LOCAL_MACHINE\Security
	Security policy

	SOFTWARE
	Installation program
	HKEY_LOCAL_MACHINE\Software
	OS version, OS installation date, OS installation directory and owner account

	SYSTEM
	System settings
	HKEY_LOCAL_MACHINE\System
	Host name, time zone, system shutdown time, USB device and the like

	NTUSER.DAT
	User settings
	HKEY_USERS\.DEFAULT
	List of files you opened

Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	key
	String
	Subkey

	type
	String
	Type

	name
	String
	Registry name

	value
	Object
	Registry data

	last_written
	Date
	Last written time

Usage
Retrieve information by providing the file path.
hive-file D:\data\registry\SYSTEM
Retrieve information when the zippath option is provided.
hive-file zippath=D:\data\registry.zip registry\SYSTEM
Check the Windows OS information.
hive-file D:\data\registry\SOFTWARE
 | search key=="ROOT\\Microsoft\\Windows NT\\CurrentVersion"
ntfs-logfile
Retrieves information such as file name, creation/modification/access time, and redo/undo operation type in a NTFS transaction log file. With this command, you can see the history of file creation, deletion and renaming.
Syntax
ntfs-logfile [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the NTFS log file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\NTFS*). If you provided the zippath option, input the NTFS file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
The path to the ZIP file.
Description
Output Fields
After running the ntfs-logfile command, the output fields are as follows:
	Field
	Type
	Description

	access_at
	Date
	Last access time

	client_data_length
	Integer
	Record volume

	created_at
	Date
	Time of creation

	file_name
	String
	File name

	flags
	Integer
	Flag

	lsn
	Integer
	Log file sequence number

	mft_head
	String
	MFT header

	mft_link_count
	Integer
	Number of entries referencing the corresponding file

	mft_lsn
	Integer
	MFT log file sequence number

	modified_at
	Date
	Last modification time

	page
	Integer
	Page number

	prev_lsn
	Integer
	Previous log file sequence number

	record_type
	Integer
	Record type (2: checkpoint record, 1: other records)

	redo_len
	Integer
	Size of redo data

	redo_offset
	Integer
	Offset of redo data

	redo_op
	String
	Redo operation code

	undo_len
	Integer
	Size of undo data

	undo_offset
	Integer
	Offset of undo data

	undo_op
	String
	Undo operation code

Redo_op and Undo_op Operation Codes
Operation Codes output to the redo_op and undo_op fields are as follows:
	`redo_op`/`undo_op`
	Hex value

	noop
	0x00

	compensation_log_record
	0x1

	initialize_file_record_segment
	0x2

	deallocate_file_record_segment
	0x3

	write_end_of_file_record_segment
	0x4

	create_attribute
	0x5

	delete_attribute
	0x6

	update_resident_value
	0x7

	update_non_resident_value
	0x8

	update_mapping_pairs
	0x9

	delete_dirty_clusters
	0xa

	set_new_attribute_size
	0xb

	add_index_entry_root
	0xc

	delete_index_entry_root
	0xd

	add_index_entry_allocation
	0xe

	delete_index_entry_allocation
	0xf

	set_index_entry_ven_allocation
	0x12

	update_file_name_root
	0x13

	update_file_name_allocation
	0x14

	set_bits_in_non_resident_bitmap
	0x15

	clear_bits_in_non_resident_bitmap
	0x16

	prepare_transaction
	0x19

	commit_transaction
	0x1a

	forget_transaction
	0x1b

	open_non_resident_attribute
	0x1c

	open_attribute_table_dump
	0x1d

	dirty_page_table_dump
	0x1f

	transaction_table_dump
	0x20

	update_record_data_root
	0x21

Usage
Retrieve by providing a file path.
ntfs-logfile D:\data\NTFS\test_LogFile
Retrieve when the zippath option is provided.
ntfs-logfile zippath=D:\data\NTFS.zip NTFS\test_LogFile
Retrieve logs where the redo_op is related to any initialize_file_record_segment or delete operation.
ntfs-logfile D:\data\NTFS\test_LogFile | sort lsn
 | search redo_op == "initialize_file_record_segment" or redo_op == "*delete*"
ntfs-mft
Retrieve information such as file path and name, file volume, disk allocation volume, file creation/modification/access time, and the existence of directories in an NTFS master file. Using the retrieved data, you can analyze the entire file and folder structure, extract deleted files or folders and browse alternate data stream (ADS) hidden information.
Syntax
ntfs-mft [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the NTFS MFT file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\NTFS*). If you provided the zippath option, input the NTFS MFT file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	no
	Integer
	File number

	file_name
	String
	File name

	file_path
	String
	File path

	file_size
	Integer
	File size

	alloc_size
	Integer
	Allocated size

	in_use
	Boolean
	In-use flag

	is_dir
	Boolean
	Directory flag

	link_count
	Integer
	Number of hard links referencing the file

	created_at
	Date
	Creation time of the $FILE_NAME attribute

	modified_at
	Date
	Last modification time of the $FILE_NAME attribute

	access_at
	Date
	Last access time of the $FILE_NAME attribute

	mft_modified_at
	Date
	Last MFT modification time of the $FILE_NAME attribute

	std_created_at
	Date
	Creation time of the $STANDARD_INFORMATION attribute

	std_modified_at
	Date
	Last modification time of the $STANDARD_INFORMATION attribute

	std_access_at
	Date
	Last access time of the $STANDARD_INFORMATION attribute

	std_mft_modified_at
	Date
	Last MFT modification time of the $STANDARD_INFORMATION attribute

	is_readonly
	Boolean
	Read-only flag

	is_hidden
	Boolean
	Hidden flag

	is_system
	Boolean
	System flag

	is_archive
	Boolean
	Archive flag

	is_device
	Boolean
	Device flag

	is_normal
	Boolean
	Normal flag

	is_temp
	Boolean
	Temporary flag

	is_sparse
	Boolean
	Sparse file flag

	is_reparse
	Boolean
	Reparse point flag

	is_compressed
	Boolean
	Compression flag

	is_offline
	Boolean
	Offline flag

	is_indexed
	Boolean
	Index flag

	is_encrypted
	Boolean
	Encryption flag

	lsn
	Integer
	Log sequence number

	seq
	Integer
	Sequence

	file_ref
	Integer
	File reference

	parent_file_ref
	Integer
	Parent file reference

	parent_no
	Integer
	Parent file number

Usage
Retrieve information by providing the file path.
ntfs-mft D:\data\NTFS\test_MFT
Retrieve information when the zippath option is provided.
ntfs-mft zippath=D:\data\NTFS.zip NTFS\test_MFT
Load the list of deleted hidden files.
ntfs-mft D:\data\NTFS\test_MFT
 | search not(in_use) and not(is_dir) and is_hidden
ntfs-usnjrnl
Retrieves operational information such as the time of the event occurrence, file path and name, and file creation/deletion. You can perform analyze the timeline by joining the retrieved data with the MFT file.
Syntax
ntfs-usnjrnl [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the USNJRNL journal file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\NTFS*). If you provided the zippath option, input the USNJRNL journal file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
Output Fields
The output field is as follows:
	Field
	Type
	Description

	_time
	Date
	Time at which the event occurred

	file_name
	String
	File name

	file_no
	Integer
	File number

	file_ref
	Integer
	File reference

	parent_file_no
	Integer
	Parent file number

	parent_file_ref
	Integer
	Parent file reference

	reason
	List
	Event behavior. Refer to Reason Flags.

	usn
	Integer
	Update sequence number

Reason Flags
For more information, see the document USN_RECORD_V3 structure (winioctl.h): https://docs.microsoft.com/en-us/windows/win32/api/winioctl/ns-winioctl-usn_record_v2
	Reason flag
	Hex
	Description

	DATA_OVERWRITE
	0x00000001
	Data has been overwritten on the default $DATA attribute.

	DATA_EXTEND
	0x00000002
	Data has been added to the default $DATA.

	DATA_TRUNCATION
	0x00000004
	Data has been truncated on the default $DATA attribute.

	NAMED_DATA_OVERWRITE
	0x00000010
	Data has been overwritten on the named default $DATA attribute.

	NAMED_DATA_EXTEND
	0x00000020
	Data has been added to the named default $DATA attribute.

	NAMED_DATA_TRUNCATION
	0x00000040
	Data has been truncated on the named default data attribute.

	FILE_CREATE
	0x00000100
	The file or directory has been created for the first time.

	FILE_DELETE
	0x00000200
	The file or directory is deleted.

	EA_CHANGE
	0x00000400
	The extended attributes of the file or directory have changed.

	SECURITY_CHANGE
	0x00000800
	The access permission has been changed.

	RENAME_OLD_NAME
	0x00001000
	The old name when the file or directory is renamed.

	RENAME_NEW_NAME
	0x00002000
	The new name when the file or directory is renamed.

	INDEXABLE_CHANGE
	0x00004000
	The index status has been changed.

	BASIC_INFO_CHANGE
	0x00008000
	One or more file/directory attributes or time stamps have been changed.

	HARD_LINK_CHANGE
	0x00010000
	A hard link has been created or removed.

	COMPRESSION_CHANGE
	0x00020000
	The compression status has been changed (compressed or decompressed).

	ENCRYPTION_CHANGE
	0x00040000
	The encryption status has been changed (encrypted or decrypted).

	OBJECT_ID_CHANGE
	0x00080000
	The object ID has been changed.

	REPARSE_POINT_CHANGE
	0x00100000
	The reparse point has been changed.

	STREAM_CHANGE
	0x00200000
	An attribute of the named $DATA has been added, removed, or renamed.

	TRANSACTED_CHANGE
	0x00400000
	The given stream is modified through a committed TxF transaction.

	INTEGRITY_CHANGE
	0x00800000
	The integrity setting has been changed.

	CLOSE
	0x80000000
	The file or directory is closed.

Usage
Retrieve information by providing the file path.
ntfs-usnjrnl D:\data\NTFS\test_UsnJrnl
Retrieve information when the zippath option is provided.
ntfs-usnjrnl zippath=D:\data\NTFS.zip NTFS\test_UsnJrnl
Load the deletion history of executable files.
ntfs-usnjrnl D:\data\NTFS\test_UsnJrnl
 | search file_name == "*.exe" and string(reason) == "*DELETE*"
Analyze the timeline by joining with the NTFS MFT file.
ntfs-usnjrnl D:\data\NTFS\test_UsnJrnl
 | streamjoin type=left file_no [ntfs-mft D:\data\NTFS\test_MFT | rename no as file_no | fields file_no, file_path, in_use, is_dir]
 | eval reason = strjoin(" | ", reason)
 | fields _time, file_path, reason, in_use, is_dir
reg-opensave-files
Loads the "information on the files recently opened or saved with the Windows Explorer common dialog box" stored in the registry file and information on the files you opened or saved through web browsers and applications. Using this command, you can see files recently opened or saved by the user.
Syntax
reg-opensave-files [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. :\data\registry*.DAT). If you provided the zippath option, input the DAT file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	file_path
	String
	File path

	file_ext
	String
	File extension

	file_size
	String
	File volume

	access_at
	Date
	Last access time

	created_at
	Date
	Creation time

	modified_at
	Date
	Last modification time

	mft_entry_index
	Binary
	MFT entry index

	ntfs_seq
	Integer
	NTFS sequence

	last_written
	Date
	Last written time

	order
	Integer
	File order by extension

Usage
Retrieve information by providing the file path.
reg-opensave-files D:\data\registry\NTUSER.DAT
Retrieve information when the zippath option is provided.
reg-opensave-files zippath=D:\data\registry.zip registry\NTUSER.DAT
Sort the order field by file extension.
reg-opensave-files D:\data\registry\NTUSER.DAT
 | sort file_ext, order
reg-recent-docs
Loads the "information on the files and folders recently opened or executed by the user with Windows Explorer" stored in the registry file. With the loaded data, you can check information on files and folders opened or executed by the user and whether documents and folders have been executed. You can also use it to identify the user's behavior.
Syntax
reg-recent-docs [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\registry*.DAT). If you provided the zippath option, input the registry file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	file_name
	String
	File name

	file_ext
	String
	File extension

	last_written
	Date
	Last written time

	order
	Integer
	File order by extension

Usage
Retrieve information by providing the file path.
reg-recent-docs D:\data\registry\NTUSER.DAT
Retrieve information when the zippath option is provided.
reg-recent-docs zippath=D:\data\registry.zip registry\NTUSER.DAT
Sort the order field by file extension.
reg-recent-docs D:\data\registry\NTUSER.DAT
 | sort file_ext, order
reg-shellbags
Loads the "information on the folder accessed by the user from local, network and removable storage devices" stored in the registry. Using the loaded data, you can check the time information of when a user accessed a specific folder, track evidence of deletion/overwriting of existing folders and track the MAC time for folder access through Explorer.
Syntax
reg-shellbags [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\registry*). If you provided the zippath option, input the registry file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	file_name
	String
	File name

	file_ext
	String
	File extension

	last_written
	Date
	Last written time

	order
	Integer
	File order by extension

Usage
Retrieve information by providing the file path.
reg-shellbags D:\data\registry\NTUSER.DAT
Retrieve information when the zippath option is provided.
reg-shellbags zippath=D:\data\registry.zip registry\NTUSER.DAT
Sort the order field by file extension.
reg-shellbags D:\data\registry\NTUSER.DAT
 | sort file_ext, order
reg-shim-cache
Loads information such as the path, volume, and last run time of all executable files using the AppCompatCache key (Path: HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\AppCompatCache\AppCompatCache) data stored in the registry file. You can check the name, path, volume information, and last run time of executable files with the loaded data and use it to analyze infringement accidents.
Syntax
reg-shim-cache [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\registry*). If you provided the zippath option, input the registry file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	file_path
	String
	Executable file path

	modified_at
	Date
	Last modification time

Usage
Retrieve information by providing the file path.
reg-shim-cache D:\data\registry\SYSTEM
Retrieve information when the zippath option is provided.
reg-shim-cache zippath=D:\data\registry.zip registry\SYSTEM
reg-user-assists
Loads information such as "the list of programs recently executed, the last run time, and the execution count" stored in the registry file. Using the loaded data, you can check the name and list of recently executed applications and use the time and number of recently executed applications for analysis.
Syntax
reg-user-assists [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] FILE_PATH
Required Parameter
FILE_PATH
Path to the registry file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\registry*). If you provided the zippath option, input the registry file path in the ZIP file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file
Description
The output fields are as follows:
	Field
	Type
	Description

	key
	String
	Executable file path

	session_num
	Integer
	Session number

	exec_count
	Integer
	Number of times of execution

	focus_time
	Integer
	Time activated

	last_execution
	Date
	Last run time

	last_written
	Date
	Last written time

Usage
Retrieve information by providing the file path.
reg-user-assists D:\data\registry\NTUSER.DAT
Retrieve information when the zippath option is provided.
reg-user-assists zippath=D:\data\registry.zip registry\NTUSER.DAT
zipfile-entries
Imports a list of compressed files and directories in the specified ZIP file.
Syntax
zipfile-entries ZIPFILE_PATH
Required Parameter
ZIPFILE_PATH
Path to the ZIP file. If you use a wildcard (*) in the file name, you can retrieve all the files containing a specific string pattern in the file name at once. The Logpresso daemon must have the read permission to the file.
Description
The output fields are as follows:
	Field
	Type
	Description

	zip_path
	String
	Path to ZIP file

	entry
	String
	ZIP file name

	file_size
	Integer
	File size

	compressed_size
	Integer
	Compressed size

	modified_at
	Date
	Last modification time

	comment
	String
	Comment

Usage
Load the list of files and directories in the entry.zip file under D:\data.
zipfile-entries
 D:\data\entry.zip
Load the list of files and directories of all ZIP files under D:\data.
zipfile-entries D:\data*.zip
Retrieve file entries with the .evtx extension in the entry.zip file.
zipfile-entries D:\data\entry.zip
 | search entry=="*.evtx"
Linux Artifacts
linux-arp-entries
Retrieves the ARP cache from the /proc/net/arp file.
Syntax
linux-arp-entries
Description
After running the linux-arp-entries command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	type
	String
	Hardware type. In most cases, Ethernet(1).

	ip
	IP address
	Associated IP address

	mac
	String
	MAC address

	iface
	String
	Network interface name

Usage
Look up the ARP cache.
linux-arp-entries
linux-connections
Looks up TCP/IP network connection information.
Syntax
linux-connections
Description
This command retrieves TCP/IP network connection information from the following files:
/proc/net/icmp
/proc/net/icmp6
/proc/net/raw
/proc/net/raw6
/proc/net/tcp
/proc/net/tcp6
/proc/net/udp
/proc/net/udp6
After running the linux-connections command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	pid
	Integer
	Process ID

	rx_queue
	Integer
	Rx queue length

	tx_queue
	Integer
	Tx queue length

	protocol
	String
	Protocol

	local_ip
	IP address
	Local IP address

	local_port
	Integer
	Local port

	remote_ip
	IP address
	Remote IP address

	remote_port
	Integer
	Remote port

	state
	String
	Status (LISTEN, ESTABLISHED, TIME_WAIT, etc.)

linux-cron-jobs
List all scheduled cron jobs.
Syntax
linux-cron-jobs
Description
This command collects information about cron jobs from the following files:
/var/cron/tabs/
/var/spool/cron/
/var/spool/cron/crontabs/
After running the linux-system-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	user
	String
	User ID

	cron_schedule
	String
	Schedule

	cmd_line
	String
	Command to run

linux-env
Lists the environment variables in Linux.
Syntax
linux-env
Description
After running the linux-env command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	name
	String
	Environment variable name

	value
	String
	Value of environment variable

linux-failed-logins
Retrieves the log of failed login attempts from the /var/log/btmp file.
Syntax
linux-failed-logins [ignore-error=BOOL]
Optional Parameter
ignore-error=BOOL
Boolean option to handle error when the /var/log/btmp file cannot be read (default: f).
t: Exits gracefully if an error occurs
f: Fails if an error occurs
Description
After running the linux-system-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Last failed login time

	src_ip
	IPv4 address
	Remote IP address from which login was attempted

	user
	String
	User ID

linux-hidden-files
Recursively lists the hidden files in the /tmp, /dev, and /home directories.
Syntax
linux-hidden-files
Description
After running the linux-hidden-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether others read permission is given

	others_write
	Boolean
	Whether others write permission is given

	others_execute
	Boolean
	Whether others execute permission is given

linux-logins
Extracts login and logout histories of all users from the /var/log/wtmp log.
Syntax
linux-logins
Description
After running the linux-logins command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Login time

	src_ip
	IPv4 address
	Access IP address

	host
	String
	Hostname of client (IP or domain name)

	pid
	Integer
	Process ID

	user
	String
	User ID

	tty
	String
	Terminal

	login_time
	Date
	Login time

	logout_time
	Date
	Logout time

linux-network-interfaces
Retrieves network interface settings and statistics information.
Syntax
linux-network-interfaces
Description
This command collects network interface settings and statistics information based on the interface flags in files under /sys/class/net/, each statistic value in files under the statistics directory, and the execution result of the ip address show command.
After running the linux-network-interfaces command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	iface
	String
	Interface name

	status
	String
	Interface status

	mtu
	Integer
	Maximum transfer unit

	ip_addr
	IPv4 address
	IPv4 address

	netmask
	IPv4 address
	IPv4 netmask

	ip_addr6
	IPv6 address
	IPv6 address

	prefix_len
	Long
	IPv6 prefix

	rx_pkts
	Long
	Number of packets received

	rx_bytes
	Long
	Received data in bytes

	rx_errors
	Long
	Number of packet received with errors, such as checksum mismatch

	rx_drops
	Long
	Number of packet received discarded for reasons such as destination mismatch

	rx_overruns
	Long
	Number of packet received but discarded for reasons such as receive queue overrun

	tx_pkts
	Long
	Number of packets tranferred

	tx_bytes
	Long
	Transferred data in bytes

	tx_errors
	Long
	Number of packet not transmitted due to an error

	tx_drops
	Long
	Number of packet not transmitted for reasons such as destination mismatch

	tx_overruns
	Long
	Number of packet not transmitted for reasons such as transfer queue overrun

	tx_carrier
	Long
	Number of disconnections

	tx_collisions
	Long
	Packets with collision

linux-no-owner-files
Lists files that do not have an owner.
Syntax
linux-no-owner-files
Description
After running the linux-no-owner-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

linux-non-device-files
Lists non-device files in the /dev directory.
Syntax
linux-non-device-files
Description
After running the linux-non-device-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

linux-open-files
Collects the /proc/PID/fd file lists and returns the open file list by process in Linux.
Syntax
linux-open-files
Description
After running the linux-open-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	pid
	Integer
	Process ID

	cmd_line
	String
	Complete command line for the process

	user
	String
	User ID

	fd
	Integer
	File discriptor

	type
	String
	File type (REG = regular file)

	file_size
	Long
	File size

	target
	String
	File path or socket information

linux-partitions
Parses the fdisk -l command execution result to list all disk partitions in Linux.
Syntax
linux-partitions
Description
After running the linux-partitions command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	device
	String
	Storage device name

	start
	Long
	Start number of sector

	end
	Long
	End number of sector

	sector_count
	Long
	Total number of sector

	total_bytes
	Long
	Total partition size in bytes

	type
	String
	Partition type

linux-pipes
Parse the find / -type p command execution result and lists the pipe files.
Syntax
linux-pipes
Description
After running the linux-pipes command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

linux-processes
Retrieves process information and system resource usage from the /proc file system.
Syntax
linux-processes
Description
After running the linux-processes command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	user
	String
	Process user

	pid
	Integer
	Process ID

	ppid
	Integer
	Parent process ID

	cpu_usage
	Double
	CPU utilization in percent

	mem_usage
	Double
	Memory utilization in percent

	vsz
	Integer
	Virtual memory size(KiB)

	rss
	Integer
	Resident set size(KiB)

	status
	String
	Status

	is_deleted
	Boolean
	Whether the original executable file is deleted

	cmd_line
	String
	Complete command line

	start_time
	Date
	Process start time

linux-recent-files
Lists all recently created or modified files in all directories under the root directory. If no from or span options are specified, it only lists files created or modified in the last 1 day by default.
Syntax
linux-recent-files [OPTION]
Optional Parameter
from=yyyyMMddHHmmss
Start date and time of the search period in the form of yyyyMMddHHmmss (default: none). The time period for the search includes the specified time point. If you provide only the first part, the command recognizes the remaining digits as 0. For example, if you provide 20130605, the command recognizes it as 20130605000000 (June 5, 2013, 00:00:00). This option cannot be used with span.
span=INT{y|mon|w|d|h|m|s}
Time range to search the recent files based on the current time (default: 1d). You can specify time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second). For example, 10s refers to "the last 10 seconds" based on the current time.
Description
After running the linux-recent-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

Usage
View a list of files created or modified in the last day
linux-recent-files
View a list of files created or modified in the last 7 days
linux-recent-files span=7d
View a list of files created or modified after January 1, 2021
linux-recent-files from=20210101
linux-rkhunter
Runs rkhunter and returns the results. In order to use this command, the rkhunter command must be available on your system. rhhunter is open-source software for monitoring rootkits on POSIX compliant systems.
Syntax
linux-rkhunter [ignore-error=BOOL]
Optional Parameter
ignore-error=BOOL
Boolean option to handle error (default: f).
t: Exits gracefully if an error occurs (e.g. rkhunter is not installed).
f: Fails if an error occurs.
Description
After running the linux-rkhunter command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	target
	String
	Target

	reason
	String
	Diagnosis

	description
	String
	Description

linux-routes
Retrieves routing information from /proc/net/route.
Syntax
linux-routes
Description
After running the linux-routes command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	destination
	IPv4 address
	Destination network address

	mask
	IPv4 address
	Netmask

	forward
	IPv4 address
	Gateway address

	flags
	String
	Flags (C: Cache entry, D: Dynamically installed by daemon or redirect, G: Use Gateway, H: Target is a host, M: Modified from routing daemon or redirect, U: Route is up)

	mss
	Integer
	Maximum segment size

	irtt
	Integer
	Initial round trip time

	iface
	String
	Network interface name

linux-setuid-files
Runs the find / -user root -perm -4000 -print command and lists the files with setuid permissions.
Syntax
linux-setuid-files [md5=BOOL]
Optional Parameter
md5=BOOL
Boolean option to output the MD5 hash of files (default: f)
t: outputs the MD5 hash of files
f: NOT output the MD5 hash of files
Description
After running the linux-setuid-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	md5
	String
	MD5 hash of the file

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

linux-shell-sessions
Retrieves a list of all currently logged in users (sessions) from the /var/run/utmp log.
Syntax
linux-shell-sessions
Description
After running the linux-shell-sessions command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	user
	String
	User ID

	tty
	String
	Terminal

	host
	String
	Host name

	src_ip
	IPv4 address
	Source IP address from which the user logged in

	idle_time
	Integer
	Idle time in seconds

	jcpu
	Double
	CPU time consumed by all processes connected to the terminal in seconds

	pcpu
	Double
	CPU time used by the current process in seconds

	cmd_line
	String
	Running command line

linux-system-files
Retrieves permissions and MD5 hashes of files in the /usr/bin directory.
Syntax
linux-system-files [md5=BOOL]
Optional Parameter
md5=BOOL
Boolean option to output the MD5 hash of files (default: f)
t: outputs the MD5 hash of files
f: NOT output the MD5 hash of files
Description
After running the linux-system-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	md5
	String
	MD5 hash of the file

	owner_read
	Boolean
	Whether owner's read permission is given to the file.

	owner_write
	Boolean
	Whether owner's write permission is given to the file.

	owner_execute
	Boolean
	Whether owner's execute permission is given to the file.

	group_read
	Boolean
	Whether group's read permission is given to the file.

	group_write
	Boolean
	Whether group's write permission is given to the file.

	group_execute
	Boolean
	Whether group's execute permission is given to the file.

	others_read
	Boolean
	Whether others' read permission is given to the file.

	others_write
	Boolean
	Whether others' write permission is given to the file.

	others_execute
	Boolean
	Whether others' execute permission is given to the file.

linux-shell-commands
Retrieves the commands executed by each user from the bash_history and .zsh_history logs in /etc/passwd.
Syntax
linux-shell-commands
Description
After running the linux-shell-commands command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	user
	String
	User ID

	cmd_line
	String
	command line executed

linux-system-info
Retrieves system information, including hostname, kernel version, uptime, average load, and UMASK information.
Syntax
linux-system-info
Description
After running the linux-system-info command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	hostname
	String
	Host name

	kernel_ver
	String
	Kernel version

	kernel_build_time
	Date
	Date and time when the kernel was built

	uptime
	Integer
	Uptime

	load_avg_1m
	Double
	1-minute average load

	load_avg_5m
	Double
	5-minute average load

	load_avg_15m
	Double
	15-minute average load

	umask
	String
	Permission mask applied when creating a file or directory

	console_banner
	String
	Console banner

	telnet_banner
	String
	Telnet banner

	system_banner
	String
	System banner

linux-systemd-services
Runs the systemctl -at service command to list Linux systemd services.
Syntax
linux-systemd-services
Description
After running the linux-systemd-services command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	service
	String
	Service unit

	load_status
	String
	Service unit load status

	active_status
	String
	High-level unit activation state

	sub_status
	String
	Low-level unit activation state

linux-systemd-timers
Runs the systemctl list-unit-files --type=timer command to list all systemd timers.
Syntax
linux-systemd-timers
Description
After running the linux-systemd-timers command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	timer
	String
	Timer name

	status
	String
	Activation status

linux-tmp-files
Recursively lists the hidden files (those with names beginning with '.') under the /tmp, /dev, and /home directories.
Syntax
linux-tmp-files
Description
After running the linux-tmp-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	file_path
	String
	File path

	file_name
	String
	File name

	file_type
	String
	File type

	permissions
	String
	Permissions

	file_size
	Long
	File size

	file_ctime
	Date
	Last change time

	file_mtime
	Date
	Last modification time

	file_atime
	Date
	Last access time

	owner_read
	Boolean
	Whether owner read permission is given

	owner_write
	Boolean
	Whether owner write permission is given

	owner_execute
	Boolean
	Whether owner execute permission is given

	group_read
	Boolean
	Whether group read permission is given

	group_write
	Boolean
	Whether group write permission is given

	group_execute
	Boolean
	Whether group execute permission is given

	others_read
	Boolean
	Whether other read permission is given

	others_write
	Boolean
	Whether other write permission is given

	others_execute
	Boolean
	Whether other execute permission is given

linux-users
Retrieves a list of users from the /etc/passwd file.
Syntax
linux-users
Description
After running the linux-users command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	user
	String
	User ID

	uid
	Integer
	UID

	gid
	Integer
	GID

	description
	String
	Description

	home_path
	String
	Path to the home directory

	shell
	String
	Login shell

linux-user-groups
Retrieves a list of users belonging to the root and wheel groups by group.
Syntax
linux-user-groups
Description
After running the linux-user-groups command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	gid
	Integer
	Group ID

	group
	String
	Group name

	users
	String
	Users in the group

linux-vmstats
Reports the I/O status of the system. In order to use this command, the vmstat command must be available on your system.
Syntax
linux-vmstats
Description
After running the linux-vmstats command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	swap_size
	Long
	Amount of virtual memory used

	free_size
	Long
	Amount of free virtual memory

	buffer_size
	Long
	Amount of memory used as buffers

	cache_size
	Long
	Amount of memory used as page cache

	swap_in
	Long
	Amount of memory swapped in from disk per second

	swap_out
	Long
	Amount of memory swapped to disk per second

	block_in
	Long
	Blocks received from a block device per second

	block_out
	Long
	Blocks sent to a block device per second

Web Browser Artifacts
chrome-downloads
Retrieves the download history from the Google Chrome 'History' SQLite file.
Syntax
chrome-downloads FILE_PATH
Required Parameter
FILE_PATH
Path to 'History' SQLite file
Description
After running the chrome-downloads command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	start_time
	Date
	Download start time

	end_time
	Date
	Download end time

	mime_type
	String
	MIME type

	file_open
	Boolean
	Whether the file has ever been opened or not

	file_path
	String
	Path to the file

	file_size
	Integer
	File size

	url
	String
	File URL

	referer
	String
	Referer URL

Usage
Retirieve the download history from the file at /opt/logpresso/History.
chrome-downloads /opt/logpresso/History
chrome-search-terms
Retrieves the search history from the Google Chrome 'History' SQLite file.
Syntax
chrome-search-terms FILE_PATH
Required Parameter
FILE_PATH
Path to 'History' SQLite file
Description
After running the chrome-search-terms command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	keywords
	String
	Searched keywords

	title
	String
	Website title

	url
	String
	Web page URL

Usage
Retrieve the search history from the file at /opt/logpresso/History.
chrome-search-terms /opt/logpresso/History
chrome-visits
Retrieves the website visit history from the Google Chrome 'History' SQLite file.
Syntax
chrome-visits FILE_PATH
Required Parameter
FILE_PATH
Path to 'History' SQLite file
Description
After running the chrome-visits command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	title
	Integer
	Website title

	visit_count
	Integer
	Number of website visits

	typed_count
	Integer
	Number of website visits by entering a URL directly

	hidden
	Boolean
	Whether a webpage is loaded inside an iframe

	url
	String
	URL visited

Usage
Retrieve the website visit history from the file at /opt/logpresso/History.
chrome-visits /opt/logpresso/History
esedb-columns
Retrieves a list of column definitions for a table from an Extensible Storage Engine (ESE) database file.
Syntax
esedb-columns table=TABLE FILE_PATH
Required Parameter
FILE_PATH
Path to the ESE database file.
table=TABLE
Name of the table from which to retrieve the column definition list.
Description
After running the esedb-columns command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_file
	String
	File name

	table_name
	String
	Table name

	column_id
	Integer
	Column identifier

	column_name
	String
	Column name

	column_type
	String
	Colum data type

The column_type field represents one of the following values: bit, unsigned byte, short, unsigned short, long, unsigned long, long long, binary , long binary, or text
Usage
Retrieve the list of columns in the MSysObjects table from the /opt/logpresso/WebCacheV01.dat file.
esedb-columns table=MSysObjects /opt/logpresso/WebCacheV01.dat
esedb-records
Retrieves records in a specified table from an ESE database file.
Syntax
esedb-records table=TABLE FILE_PATH
Required Parameter
table=TABLE
Name of the table in which to look up records.
FILE_PATH
Path to the ESE database file.
Usage
Retrieve records in the MSysObjects table from the /opt/logpresso/WebCache/webCacheV01.dat file.
esedb-records table=MSysObjects /opt/logpresso/WebCacheV01.dat
esedb-tables
Retrieves a list of all tables and columns from an ESE database file.
Syntax
esedb-tables FILE_PATH
Required Parameter
FILE_PATH
Path to the ESE database file.
Description
After running the esedb-tables command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_file
	String
	File name

	table_name
	String
	Table name

	columns
	List
	List of columns

Usage
Retrieve the list of all tables and columns from the /opt/logpresso/WebCacheV01.dat file.
esedb-tables /opt/logpresso/WebCacheV01.dat
eml-file
Parse an RFC 822 compliant EML file to extract email information such as headers, subject, and content.
Syntax
eml-file [zipcharset=CHARSET] [zippath=ZIPFILE_PATH] [raw=BOOL] FILE_PATH
Required Parameter
FILE_PATH
Path to the EML file. Using a wildcard (*) in the file name, you can retrieve all files containing a specific string pattern in the file name (e.g. D:\data\eml*.eml). If you provided the zippath option, input the EML file path in the zip file.
Optional Parameter
zipcharset=CHARSET
Character set to be used to decode the ZIP entry name and comment that are not encoded by UTF-8 encoding. Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
zippath=ZIPFILE_PATH
Path to the ZIP file.
raw=t
HTML format to be applied to mail_content (default: f).
t: HTML
f: plain text
Description
The output fields are as follows:
	Field
	Type
	Description

	_file
	String
	EML file name

	_time
	Date
	Sent date from "Date" header

	mail_from
	String
	Address from "From" header

	mail_from_name
	String
	Display name from "From" header

	mail_to
	String
	Addresses from "To" header, delimited by a new line.

	mail_to_name
	String
	Display names from "To" header, delimited by a new line.

	mail_cc
	String
	Addresses from "Cc" header, delimited by a new line.

	mail_cc_name
	String
	Display names from "Cc" header, delimited by a new line.

	mail_bcc
	String
	Address from "Bcc" header, delimited by a new line.

	mail_bcc_name
	String
	Display names from "Bcc" header, delimited by a new line.

	mail_subject
	String
	Subject

	mail_content
	String
	Text or HTML content.

	mail_attachments
	String
	Attachment file names, delimited by a new line.

	mail_headers
	String
	Header name-value pairs, delimited by a new line.

	attachments
	Array
	Elements with file_name and file_size properties.

Usage
Retrieve information by providing the EML file path.
eml-file sample.eml
Retrive information when the zippath option is provided.
eml-file zippath=image.zip sample.eml
firefox-downloads
Retrieves the download history from the Firefox places.sqlite file.
Syntax
firefox-downloads FILE_PATH
Required Parameter
FILE_PATH
Path to the places.sqlite file.
Description
After running the firefox-downloads command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	start_time
	Date
	Download start time

	end_time
	Date
	Download end time

	file_path
	String
	Path to the file

	file_size
	Integer
	File size

	url
	String
	File URL

Usage
Retrieve the download history from the /opt/logpresso/places.sqlite file.
firefox-downloads /opt/logpresso/places.sqlite
firefox-visits
Retrieves the website visit history from the Firefox places.sqlite file.
Syntax
firefox-visits FILE_PATH
Required Parameter
FILE_PATH
Path to the places.sqlite file.
Description
After running the firefox-visits command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	title
	String
	Website title

	visit_count
	Integer
	Number of website visits

	typed_count
	Integer
	Number of website visits by entering a URL directly

	hidden
	Boolean
	Whether to allow iframe to be set to transparent

	url
	String
	URL visited

Usage
Retrieve the website visit history from the /opt/logpresso/places.sqlite file.
firefox-visits /opt/logpresso/places.sqlite
ie-cache-files
Retrieves cache file data from an ESE database file.
Syntax
ie-cache-files FILE_PATH
Required Parameter
FILE_PATH
Path to the ESE database file.
Description
After running the ie-cache-files command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	container_id
	Integer
	Container ID

	entry_id
	Integer
	Entry ID

	cache_id
	Integer
	Cache ID

	visit_count
	Integer
	Number of website visits

	url
	String
	Download URL

	file_name
	String
	File name

	file_size
	Integer
	File size

	sync_time
	Date
	Last access time

	creation_time
	Date
	Creation time

	expiry_time
	Date
	Expiry time

	modified_time
	Date
	Last modification time

	request_headers
	String
	HTTP request headers

	response_headers
	String
	HTTP response headers

	group
	Binary
	-

	url_hash
	Integer
	URL Hash

	secure_dir
	Integer
	Directory index

Usage
Retrieves cache file data from the /opt/logpresso/WebCacheV01.dat file.
ie-cache-files /opt/logpresso/WebCacheV01.dat
ie-cookies
Retrieves cookie data from an ESE database file.
Syntax
ie-cookies
Required Parameter
FILE_PATH
Path to the ESE database file.
Usage
Retrieve cookie data from the /opt/logpresso/WebCacheV01.dat file.
ie-cookies /opt/logpresso/WebCacheV01.dat
ie-downloads
Retrieves the download history from an ESE database file.
Syntax
ie-downloads FILE_PATH
Required Parameter
FILE_PATH
Path to the ESE database file.
Description
After running the ie-downloads command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	container_id
	Integer
	Container ID

	entry_id
	Integer
	Entry ID

	cache_id
	Integer
	Cache ID

	visit_count
	Integer
	Number of website visits

	url
	String
	Download URL

	file_path
	String
	File path

	file_size
	Integer
	File size

	sync_time
	Date
	Downloaded time

	response_headers
	String
	HTTP Response header

	url_hash
	Integer
	URL Hash

	secure_dir
	Integer
	Directory index

Usage
Retrieve the download history from the /opt/logpresso/WebCacheV01.dat file.
ie-downloads /opt/logpresso/WebCacheV01.dat
ie-visits
Retrieves the website visit history from an ESE database file.
Syntax
ie-visits FILE_PATH
Required Parameter
FILE_PATH
Path to the ESE database file
Description
The output fields are as follows:
Output Fields
	Field
	Type
	Description

	_time
	Date
	Time of visit

	container_id
	Integer
	Container ID

	entry_id
	Integer
	Entry ID

	cache_id
	Integer
	Cache ID

	visit_count
	Integer
	Number of website visits

	user
	String
	NT account

	url
	String
	URL visited

	file_size
	Integer
	File size

	sync_time
	Date
	Last access time

	expiry_time
	Date
	Expiry time

	modified_time
	Date
	Last modification time

	response_headers
	String
	HTTP response headers

	url_hash
	Integer
	URL hash

	secure_dir
	Integer
	Directory index

Usage
Retrieve the website visit history from the /opt/logpresso/WebCacheV01.dat file.
ie-visits /opt/logpresso/WebCacheV01.dat
sqlite-records
Retrieves records in a specified table from an SQLite database file.
Syntax
sqlite-records table=TABLE FILE_PATH
Required Parameter
table=TABLE
Name of the table in which to look up records.
FILE_PATH
Path to the SQLite file.
Usage
Retrieve records in the visits table in the /opt/logpresso/sqlite file.
sqlite-records table=visits /opt/logpresso/sqlite
sqlite-tables
Retrieves the table scheme from an SQLite database file.
Syntax
sqlite-tables FILE_PATH
Required Parameter
FILE_PATH
Path to the SQLite file
Description
After running the sqlite-records command, the output fields are as follows:
Output Fields
	Field
	Type
	Description

	type
	String
	Object type

	name
	String
	Object name

	table_name
	String
	Table name

	root_page
	Integer
	Root page number

	sql
	String
	Table scheme

Usage
Retrieve the table scheme from the /opt/logpresso/sqlite file.
sqlite-tables /opt/logpresso/sqlite
System Commands
System Congifuration
confdb
Retrieves the documents or metadata stored in the confdb. This command receives the name of the database instance or collection as an argument. Administrative privileges are required to execute this command.
Syntax
confdb SUB-COMMAND
SUB-COMMAND
databases
Retrieve a list of all confdb database instances.
cols DB_NAME
List all collection names of the specified confdb database instance.
docs DB_NAME COL_NAME
Retrieve all document objects of the specified confdb collection of the confdb database instance.
logs DB_NAME
Retrieve commit logs of the specified confdb database instance.
Description
confdb is the database storing the (platform) settings of the Logpresso. The logical structure is as follows:
[image:]
confdb consists of multiple database instances.
A database instance consists of more than one collection. A collection is similar to a table in a relational database (RDBMS).
A collection consists of more than one document. A document is similar to a record in an RDBMS.
A log is generated once a document is committed to confdb or database revision is updated.
When you provide the unit of the database (databases, cols, docs) as an argument, it extracts the corresponding data.
Retrieve database instances
The following is an example command to get the list of database instances of confdb in Logpresso Sonar.
confdb databases
| # change the output field order
| order name, rev, commits, last_commit, last_msg
| # sort in ascending order by name field
| sort name
Result of the command confdb databases:
[image:]
	Field
	Type
	Description

	name
	String
	Name of the database instance

	rev
	Integer
	Revision number of the database instance

	commits
	Interger
	Number of commits to the database

	last_commit
	Date
	Date of the last commit

	last_msg
	String
	Last commit message

List all collection names
The following is an example command to get the list of collections for the database instances araqne-rpc. This collection list has name field only.
confdb cols araqne-rpc
[image:]
Retrieve documents from collection
The following is an example command to retrieve all documents in the bindings collection in the araqne-rpc database instance.
confdb docs araqne-rpc bindings
A document consists of common attribute fields such as doc_id, doc_prev, and doc_rev, as well as document-specific fields.
[image:]
For common attribute fields, refer to the below table.
	Field
	Type
	Description

	doc_id
	Integer
	Serial number of document

	doc_prev
	Integer
	Previous revision number of document

	doc_rev
	Integer
	Current revision number of document

Retrieve commit logs
You can view the commit history of the database instance.
confdb logs araqne-rpc
For commit log fields, refer to the below table.
	Field
	Type
	Description

	_time
	Time
	Time of commit

	rev_id
	Integer
	Commit revision ID

	committer
	String
	Name of committer module (araqne-rpc in the above example)

	msg
	String
	Summary of commit

	manifest_id
	Integer
	Manifest ID for changeset

Log collectors
system loggers
Loads the status of all currently configured log collectors. Administrative privileges are required to execute this command.
Syntax
system loggers
Description
Output fields are as follows:
namespace: Name of the set to which the logger belongs (the logger executed in the Logpresso local means the local set, otherwise it is displayed as the name (guid) of the sentry where the logger is located)
name: Name of the logger
factory_namespace: Name of the set to which the logger factory belongs
factory_name: Name of the logger factory
status: Status of the current logger (running: being executed, stopped: stopped)
interval: Logger execution cycle (unit: ms)
cron_schedule: Scheduled execution schedule
log_count: Number of logs collected so far
drop_count: Number of dropped logs
log_volume: Total volume of the log data (bytes)
drop_volume: Total volume of the dropped log data (bytes)
last_start_at: Last time the logger started
last_run_at: Last time the logger was executed
last_log_at: Time at which the last log was generated
last_write_at: Last time the log was received
A logger factory refers to a group of different loggers working together to perform a function. The logger factory divides its areas for each node (Logpresso (local) or sentry (guid)). Even with the same logger factory, what belongs to the local namespace and what belongs to the namespace of a sentry are different logger factories.
Tables and Data
system tables
Loads the table list in the system. The administrator can load the list of all tables in the system. Normal user accounts can only load the list of tables to which they have been granted privileges.
Syntax
system tables
Description
Output fields are as follows.
java table: Table name
metadata: Metadata of the table
primary_configs: Setting information on primary storage
replica_configs: Setting information on backup storage
lock_owner: Lock owner
lock_purpose: Purpose of locking
lock_reentcnt: Number of times the locking process locked while re-entering
retention_policy: Table archiving cycle (unit: day)
data_path: Table data file path
is_locked: Whether to lock the table (true: locked, false: unlocked)
privileges: Read permission to the the user account table
security_groups: Read permission to the user group table
To check the records stored in the table, use the table command.
system count
Loads the number of records stored until the time of the query by date.
Syntax
system count [from=yyyyMMdd] [to=yyyyMMdd] [diskonly=BOOL] [TABLE, ...]
Optional Parameter
from=yyyyMMdd
Start date of the search period in the form of yyyyMMdd. The time period for the search includes the specified time point.
to=yyyyMMdd
End date of the search period in the form of yyyyMMdd. Unlike the to option of the table command, the time period for the search includes the specified time point.
diskonly=BOOL
Option to load the number of records (default: f).
t: Loads the number of records written to the disk only.
f: Loads the number of records, including the number of records buffered in the memory.
TABLE, ...
Tables in which to check the number of records, separated by a comma (,). If you do not specify a table name, the command checks the number of records in all tables for which the user is granted read permission.
Description
Output fields are as follows.
_time: Partition date
table: Table name
count: Number of records in the table
checktable
Checks the integrity of the table data in the specified date range. Administrative privileges are required to execute this command.
Syntax
checktable [from=yyyyMMdd] [to=yyyyMMdd] [trace=BOOL] [TABLE, ...]
Optional Parameter
from=yyyyMMdd
Specify the start date (check including the start date) of the integrity check in the form of yyyyMMdd.
to=yyyyMMdd
Specify the last date (check including the last date) of the integrity check in the form of yyyyMMdd.
trace=BOOL
If you set it to t, the command also returns normal data block information that has no abnormality in integrity. If you do not use this option or set it to f, the command only displays data block information with corrupted integrity.
TABLE, ...
Specify the tables to be checked for their integrity by separating them using commas (,). If you do not specify a table, the command checks the integrity of all tables for which the user is granted read permission. The table name supports wildcards (*).
Description
An integrity check is performed only if the target table uses an "encryption profile in which a digest algorithm is set". The tables that do not contain the HMAC signature required for the integrity check are automatically excluded from the check.
The fields displayed when executing the command are as follows.
table: Table name
day: Date partition name
block_id: Block ID
last_block_id: The last block ID, which appears only if the integrity is corrupted
signature: The hash value calculated at the time of data creation
hash: The hash value calculated at the time of the integrity check. If this value differs from the signature field value, it is considered a tampered one.
msg: Displayed as a valid, modified, or corrupted string. If the data is tampered or corrupted, it is skipped because the data block cannot be read when executing the data retrieval query.
valid: Integrity is validated.
modified: Data is tampered.
corrupted: The file structure is corrupted.
If no abnormality is found during the integrity check, there is no specific output result.
Usage
Check the integrity of data for all tables of September 2014.
checktable from=20140901 to=20140930 *
Check the Integrity of all table data starting with syslog_.
checktable syslog_*
copytable
Copies or moves table data and index data files in the specified date range to the specified path. Administrative privileges are required to execute this command.
Syntax
copytable
 [from=yyyyMMdd] [to=yyyyMMdd]
 [incremental=BOOL|overwrite=BOOL|worm=BOOL] [move=BOOL]
 [tables="TABLE, ..."]
 [indexpath="PATH"] path="PATH"
Required Parameter
path="PATH"
Path to save the table backup by enclosing it in a pair of double quotes (" "). If the backup path has special characters such as backslashes (\) or whitespaces, you need to escape it using backslashes (\).
Optional Parameter
from=yyyyMMdd
Start date of record to be backed up in the form of yyyyMMdd. The command backs up all the records within the specified period including the start date.
to=yyyyMMdd
End date of last record to be backed up in the form of yyyyMMdd. The command backs up all the records within the specified period including the end date.
incremental=BOOL
Option to enable incremental backup (default: f).
t: Enables incremental backup. When incremental=t, the command appends data to the end of the file when there is an identical file in the path specified by the path option. This option cannot be used with the worm or overwrite option.
f: Disables incremental backup.
overwrite=BOOL
Option to enable overwriting the file specified by the path option, if it exists (default: f).
t: Overwrites the file specified by the path option if it exists. You can keep the old backup file even if you cancel it while the backup is in progress. This option cannot be used with the incremental and the worm option.
f: NOT overwrite the file specified by the path option if it exists. The query fails if the file exists.
worm=BOOL
Option to copy tables to WORM (Write Once Read Many) storage or CD (default: f).
t: Copies the source files to the backup media without creating a temporary file with the .transfer extension. This option cannot be used with the incremental or the overwrite option.
f: Writes data to a temporary file with the .transfer extension, deletes the source file when writing to this file is complete, and renames this file to that of the source file.
move=BOOL
Option to delete/keep the source file after copying is complete.
t: Deletes the source file after copying is complete. If the file size of the backup media does not match the file volume of the source, the command does not delete the source file.
f: Keeps the source file.
tables="TABLE, ..."
Tables to be backed up, separated by a comma (a) (default: all the tables). Define the entire list by enclosing it in a pair of double quotes (" ").
indexpath="PATH"
Path to save the full-text index file by enclosing it in a pair of double quotes (" ") (default: none). If the backup path has special characters such as backslashes (\) or whitespaces, you need to escape it using backslashes (\).
Description
This command is typically used to periodically back up table data and index data files to storage such as NAS.
This command returns the current progress while copying each data file. If exceptions such as the existence of a file with the same name, failure to rename, or insufficient capacity of the backup media occur, the command displays the contents of the error in the error_msg field. This allows you to perform other post-processing, such as sending an alert email when an error occurs. If the backup of some data files fails during the process, the query runs without interruption until the user explicitly cancels it.
Usage
Copy all table data files to the /backup path.
copytable path="/backup"
Copy all table data files from June 24, 2015, to June 25, 2015, to the e:\backup path.
copytable from=20150624 to=20150625 path="e:\\backup"
Move all table data files from June 24, 2015, to June 25, 2015, to the /backup path.
copytable from=20150624 to=20150625 move=t path="/backup"
Copy test table and index data files from June 24, 2015, to June 25, 2015, to the /backup path.
copytable from=20150624 to=20150625 tables="test" path="/backup" indexpath="/backup"
purge
Removes the data records within the specified date range from the table. Administrative privileges are required to execute this command.
This command is only available if you add the -Daraqne.logdb.purge=enabled switch as a Logpresso boot option.
Syntax
purge from=yyyyMMdd to=yyyyMMdd TABLE, ...
Required Parameter
from=yyyyMMdd
Start date of the first record to be discarded in the form of yyyyMMdd. The command discards all the records within the specified period including the start date.
to=yyyyMMdd
End date of the last record to be discarded in the form of yyyyMMdd. The command discards all the records within the specified period including the end date.
TABLE, ...
Tables for which data is to be discarded, separated by a comma (,). This is used when you want to discard old data and provide new data each time you execute a query.
Usage
Discard sample table data on September 10, 2014, and September 11, 2014
purge from=20140910 to=20140911 sample
system logdisk
Checks the disk usage of the compressed table data file by date.
Syntax
system logdisk [from=yyyyMMdd] [to=yyyyMMdd] [TABLE, ...]
Required Parameter
from=yyyyMMdd
Start date (including the start date) of the target to load in the form of yyyyMMdd.
to=yyyyMMdd
End date (including the last date) of the target to load in the form of yyyyMMdd.
TABLE, ...
Tables for which to check the disk usage of the table data file, separated by a comma (,). If you omit the table list, the command loads the usage of all tables for which the user account that executes the command has read permission.
Description
Output fields are as follows.
_time: Partition date
table: Partition date
disk_usage: Disk usage in bytes
system indexdisk
Loads the disk usage of all index files stored up to the time of the query by date and type.
Syntax
system indexdisk [from=yyyyMMdd] [to=yyyyMMdd] [TABLE, ...]
Optional Parameter
from=yyyyMMdd
Specify the start date (including the start date) of the target to load in the form of yyyyMMdd.
to=yyyyMMdd
Specify the last date (including the last date) of the target to load in the form of yyyyMMdd.
TABLE, ...
Tables for which to check the disk usage of the index file, separated by a comma (,). If you omit the table list, the command loads the usage of the index file on all tables for which the user account that executes the command has read permission.
Description
Output fields are as follows.
_time: Partition date
table: Table name
index: Index name
type: Index type
disk_usage: Disk usage in bytes
Lookup
system lookups
Loads a list of all lookup names currently registered in the system.
Syntax
system lookups
Description
Output fields are as follows.
name: Lookup name
Lookup refers to data in the form of a file or database used for data mapping. You can retrieve the lookup in the Query > Lookup menu in the web console (ENT, STD) and see the same information as this command displays.
For related commands, refer to the following:
lookup: Converts a specific field value into another value by importing the mapping table.
lookuptable: Loads the contents of the lookup table added in the form of a file.
memlookup: Creates an in-memory mapping table and loads metadata.
Queries
system queries
Loads the status of all queries that are currently being executed. The administrator can load all queries executed on the system, and the normal user account can only load queries executed by itself.
Syntax
system queries
Description
When you execute this command, the command returns a record containing the execution history of the query.
The record consists of the following fields.
	Field
	Type
	Description

	id
	Integer
	Query identifier

	query_string
	String
	Query string

	is_eof
	Boolean
	Whether the query is terminated (true: terminated, false: being executed)

	is_end
	Boolean
	Whether the query is terminated (true: terminated, false: being executed)

	is_cancelled
	Voolean
	Whether the query is canceled (true: canceled, false: not canceled)

	start_time
	Long
	Query start time (unit: epoch)

	finish_time
	Long
	Query finish time (unit: epoch)

	last_started
	Date
	Last refresh time

	elapsed
	Long
	Time required to execute the query (unit: ms), If the query has not started, null

	background
	Boolean
	Whether to execute in the background (true: Background query, false: Not a background query)

	commands
	Object
	Execution status for each detailed command

	sub_queries
	Array
	Subquery list

	is_scheduled_query
	Boolean
	Whether the query is scheduled (true: Scheduled query, false: Not a scheduled query)

	login_name
	String
	The account that executes the query

	remote_ip
	String
	The access IP address of the account that executes the query

	rows
	Long
	The number of records returned as a result of executing the query

'is_end' is a legacy field left for backward compatibility. Use 'is_eof' instead of 'is_end' when referencing the results of the "system queries" command in a query.
system streams
Loads the stream list in the system. Administrative privileges are required to execute this command.
Syntax
system streams
Description
Output fields are as follows.
	Field
	Type
	Description

	source_type
	String
	The type of data source(logger: log collector, table: table, stream: stream query).

	name
	String
	Stream query name

	running
	Boolean
	Whether to execute (true: being executed, false: stopped)

	enabled
	Boolean
	Whether to activate (true: activated status, false: deactivated status)

	async
	Boolean
	Asynchronous mode (true: asynchronous mode, false: synchronous mode)

	description
	String
	Description of the stream

	interval
	Integer
	Refresh cycle (unit: ms)

	query_string
	String
	Query string

	input_count
	Integer
	Number of inputs

	output_count
	Integer
	Number of outputs

	owner
	String
	The account that executes the query

	created_at
	Date
	Creation time

	modified_at
	Date
	Last modification time

	last_refresh_at
	Date
	Last refresh time

	input_tables
	String
	A list of tables coming in as input

	input_loggers
	String
	A list of log collectors coming in as input

	input_streams
	String
	A list of streams coming in as input

You can see the data coming into the stream with the following commands: logger, table, and stream.
system ceptopics
Loads statistics of the currently registered event context by topic. CEP is an abbreviation for complex event processing.
Syntax
system ceptopics
Description
Output fields are as follows.
	Field
	Type
	Description

	topic
	String
	Event context topic

	count
	Integer
	The amount of currently existing event contexts

See also
evtctxlist
evtctxadd
evtctxdel
evtctxdrop
evtctxget()
evtctxgetvar()
evtctxsetvar()
system cepclocks
If you use an external clock using the log timestamp based on the expiration and timeout for the CEP context, this reads the clock for each host that has been registered so far.
Syntax
system cepclocks
Description
Output fields are as follows.
host: Host name
time: Host clock
timeout_queue_len: Timeout queue length
expire_queue_len: Expire queue length
PCAP Devices
system pcapdevices
Loads the list of PCAP network interfaces available in Logpresso.
Syntax
system pcapdevices
Description
Output fields are as follows.
name: Network interface name (string)
description: A description of the network interface (string)
ip: The IP address (IP address object) assigned to the network interface
mac: The MAC address (string) of the network interface
subnet: The network address of the connected network
netmask: The netmask of the connected network
Sentries
system sentries
Loads all sentry status information registered in the Logpresso server. Administrative privileges are required to execute this command.
Syntax
system sentries
Description
You can see the overview of the sentry process (guid, connection status, installation path, and Java version), information of the installation server, and performance snapshots (OS, CPU, memory, and network) and more.
Output fields are as follows.
guid: Unique sentry identifier
host_name: Host name
remote_ip: The IP address of the sentry
is_connected: true if connected, false if disconnected
description: Descriptive information of the sentry (if it exists)
cpu_usage: Cpu usage (cpu_kernel + cpu_user)
mem_usage: Current memory usage (%)
disk_usage: Disk usage (bytes)
nic_rx_usage: Number of network receive packets (receive)
nic_tx_usage: Number of network transmit packets (transmit)
user_dir: Location of the execution directory
cpu_kernel: CPU usage of the kernel (%)
cpu_user: CPU usage of the user process (%)
phy_used: Physical memory usage (bytes)
phy_free: Amount of physical memory remaining (bytes)
phy_total: Total physical memory size (bytes)
swap_used: Swap memory usage (bytes)
swap_free: Amount of swap memory remaining (bytes)
swap_total: Total size of the swap memory (bytes)
last_connect_at: Last connection time
os: Operating system name
os_ver: Operating system version
arch: Architecture
jvm_name: Java virtual machine (JVM) name
jvm_version: Java virtual machine (JVM) version
ip_addrs: Fully allocated IP address array
disks: Displays total disk usage by separating it into total, available, and used (bytes)
nics: Network card list and transmission/reception volume
sentry-arp-cache
Retrieves ARP cache information of a sentry.
Syntax
sentry-arp-cache [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	type
	String
	ARP cache entry type (static, dynamic, invalid)

	ip
	IP Address
	IP address

	mac
	String
	MAC address

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Get ARP cache information from all sentries.
sentry | fields guid | sentry-arp-cache
sentry-bundles
Loads the bundle list of a sentry.
Syntax
sentry-bundles [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	bundle_id
	64-bit Integer
	Bundle ID

	symbolic_name
	String
	Bundle symbolic name

	version
	String
	Bundle version

	state
	String
	Byndle status

	last_modified
	Date
	Last modification

	integrity
	String
	Integrity status

Possible bundle statuses in the state field are as follows:
	Status
	Description

	ACTIVE
	Bundle is running.

	INSTALLED
	Bundle is installed but bundle's dependencies have not been met.

	RESOLVED
	Bundle dependencies are all resolved and bundle is ready to start.

	STARTING
	Bundle is starting.

	STOPPING
	Bundle is stopping.

	UNINSTALLED
	Bundel has been removed.

Possible integrity statuses in the integrity field are as follows:
	Status
	Description

	no signature
	Digitally signed hash value is not found.

	hash error
	SHA-512 hashing of the bundle failed (e.g. I/O error)

	verified
	The hash values match, the data has not been altered.

	modified
	The hash values do not match, the data has been modified.

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Load bundle lists of all sentries.
sentry | fields guid | sentry-bundles
sentry-jstack
Retrieves stack status information of sentry threads. This command is used to diagnose operation status of logger.
Syntax
sentry-jstack [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	tid
	64-bit Integer
	Thread ID

	name
	String
	Thread name

	state
	String
	Thread status (RUNNABLE, BLOCKED, TIMED_WAITING, WAITING)

	stacktrace
	String
	Threas stack

Possible thread statuses in state field are as follows:
	Status
	Description

	RUNNABLE
	Thread is ready to run.

	BLOCKED
	Thread is temporarily inactive until target object is unlocked.

	TIMED_WAITING
	Thread is in a timed waiting state.

	WAITING
	Thread is temporarily inactive to sync with other thread.

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
View thread stack statuses of all sentries.
sentry | fields guid | sentry-jstack
sentry-logger-configs
Retrieves the logger settings of a sentry.
Syntax
sentry-logger-configs [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid and name field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry name space

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	configs
	Map
	Logger settings in key-value pair

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Retrieves logger settings of all sentries.
sentry | fields guid | sentry-loggers | sentry-logger-configs
sentry-logger-connect
Sets a specific logger of a sentry to send log data to the Logpresso server.
Syntax
sentry-logger-connect [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid and name field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry namespace

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Create a wtmp logger on all connected sentries and set the loggers to send the log to a remote server.
sentry
 | search os == "Linux" and is_connected
 | eval name = "wtmp_linux"
 | eval factory_name = "wtmp"
 | eval configs = dict("path", "/var/log/wtmp", "server", "linux", "dst_ip", remote_ip)
 | fields guid, name, factory_name, configs
 | sentry-logger-create
 | sentry-logger-connect
sentry-logger-create
Creates a logger on a sentry.
Syntax
sentry-logger-create [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This command requires that the input record contains guid, name, factory_name and configs field values.
	Field
	Type
	Required
	Description

	guid
	String
	O
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	O
	Unique logger identifier in the sentry namespace

	description
	String
	X
	Logger description

	factory_name
	String
	O
	Logger factory identifier

	configs
	Map
	O
	Logger configuration

	table_name
	String
	X
	Name of table to which to store the logged data

	host_tag
	String
	X
	Host tag (_host field tag value)

factory_name: Using the logapi.loggerFactories command on the Logpresso shell loads the logger factory list. Logger factories available may vary depending on the operating system or the installed app.
configs: Use the sentry-logger-configs query command to check the existing logger configuration before creating a new logger.
Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:llows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	factory_name should be not null
	factory_name field value from input record is null.

	factory_name should be string
	factory_name field value from input record is not a string.

	factory_name should be non empty string
	factory_name field value from input record is empty.

	unsupported factoryname: factory_name
	factory_name logger factory is not supported.

	configs should be not null
	configs field value from input record is null.

	configs should be dict type
	configs field value from input record is not a map type.

	all values of configs should be string type
	Key-value pair of the configs map is not a string.

	missing config key: name
	Required configuration key (name) is missnig.

	table_name should be non empty string
	table_name field value from input record is empty.

	host_tag should be non empty string
	host_tag field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Creates wtmp loggers on all connected linux sentries.
sentry
 | search os == "Linux" and is_connected
 | eval name = "wtmp_linux"
 | eval factory_name = "wtmp"
 | eval configs = dict("path", "/var/log/wtmp", "server", "linux", "dst_ip", remote_ip)
 | fields guid, name, factory_name, configs
 | sentry-logger-create
sentry-logger-deploy
Bulk deploys a set of loggers defined in a logger provisioning profile to a sentry.
Syntax
sentry-logger-deploy
Description
Logpresso supports a logger provisioning profile function that automatically sets up loggers on a sentry upon connecting to the sentry. This enables collecting logs of instances that are dynamically generated from the cloud. However, if you want logger provisioning to run automatically upon connection, you first need to set the environment variable logpresso.sentry.logger_provisioning_profile when starting the sentry. The sentry-logger-deploy command automatically deploys a set of loggers defined by a provisioning profile to the specified Logpresso sentry, even if you do not specify a logger provisioning profile when the Logpresso sentry boots up.
This command only forwards the provisioning start request and does not wait. The logger configuration may still be waiting or processing even after the command ends. If a failure occurs during logger provisioning, it will not be notified other than the system log.
You can check the number of queued logger provisioning tasks using the logpresso.loggerProvisioningTasks command in the logpresso shell.
Input Field
This query requires that the input record contains guid and profile_guid field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	profile_guid
	String
	Logger provisioning profile identifier (32-character long GUID)

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	profile_guid is null
	profile_guid field value from input record is null.

	profile_guid should be string
	profile_guid field value from input record is not a string.

	profile_guid should be non empty string
	profile_guid field value from input record is empty.

	not connected
	Sentry is not connected.

	profile not found: profile_guid
	Logger provisioning profile does not exist.

Usage
Provision window loggers on the window sentries.
sentry
 | search os == "Windows*"
 | eval profile_guid="448c0422-7a30-42ef-b73a-e855e538f779"
 | sentry-logger-deploy
sentry-logger-disconnect
Disconnects a specific logger of a sentry so as not to send log data to the Logpresso server.
Syntax
sentry-logger-disconnect [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid and name field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry namespace

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Disconnect a specific logger from all connected sentries.
sentry | sentry-loggers | search name == "wtmp_linux" | sentry-logger-disconnect
sentry-logger-remove
Removes a specific logger from a sentry.
Syntax
sentry-logger-remove [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid and name field values.
	Field
	Type
	Name
	Description

	guid
	String
	Unique sentry identifier
	Not relevant to GUID in JAVA

	name
	String
	Logger identifier
	Unique logger identifier in the sentry namesapce

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Remove the 'wtmp_linux' logger from all connected sentries.
sentry | sentry-loggers | search name == "wtmp_linux" | sentry-logger-remove
This action is irreversible. Check the loggers to remove before execution by commenting out ('#') the last query sentence 'sentry-logger-remove'.
sentry-logger-set-interval
Updates the logging interval of a specific sentry logger.
Syntax
sentry-logger-set-interval [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid, name and interval field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry namespace

	interval
	32-bit Integer
	Logging interval (Unit: millisecond)

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:llows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	interval should be not null
	interval field value from input record is null.

	interval should be integer
	interval field value from input record is not integer.

	logger not found: name
	Specified logger is not found.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

	sentry method not found: setLoggerInterval
	Sentry version is earlier than 3.10.2106.0. This command is not supported.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Set the logging interval of the 'wtmp_linux' logger in all connected sentries to 5 seconds.
sentry
 | sentry-loggers
 | search name == "wtmp_linux"
 | eval interval = 5000
 | sentry-logger-set-interval
sentry-logger-set-schedule
Updates the cron-format logging schedule of a specific sentry logger.
Syntax
sentry-logger-set-schedule [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid, name and cron_schedule field values.
	Field
	Type
	Required
	Description

	guid
	String
	O
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	O
	Unique logger identifier in the sentry namespace

	cron_schedule
	String
	X
	Logging schedule in cron job format (If null is given, the existing schedule is deleted.)

cron_schedule: A schedule is defined using the unix-cron string format. For more details on scheduling, use man 5 crontab on your Linux.
Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	cron_schedule should be string
	cron_schedule field value from input record is not a string.

	wrong cron expression format: expr
	cron_schedule field value from input record is not of valid cron format.

	logger not found: name
	Logger of the specified name (name) is not found.

	logger is running: name
	You cannot update the schedule of the running logger (name).

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

	sentry method not found: setLoggerSchedule
	Sentry version is earlier than 3.10.2106.0. This command is not supported.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Set 'wtmp_linux' loggers in all connected sentries to run at minute 0.
sentry
 | sentry-loggers
 | search name == "wtmp_linux"
 | eval cron_schedule="0 * * * *"
 | sentry-logger-set-schedule
sentry-logger-set-time-range
Updates the logging time range of a specific sentry logger.
Syntax
sentry-logger-set-time-range [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid, name, start_time and end_time field values.
	Field
	Type
	Required
	Description

	guid
	String
	O
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	O
	Unique logger identifier in the sentry namespace

	start_time
	String
	X
	Logging start time (Format: HH:mm)

	end_time
	String
	X
	Logging end time (Format: HH:mm)

You can remove the existing time range setting by providing null to both start_time and end_time fields.
Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:llows:llows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	invalid start_time format
	start_time field value from input record is not in valid format (HH:mm).

	invalid end_time format
	end_time field value from input record is not in valid format (HH:mm).

	start_time is not null but end_time is null
	end_time field value is missing. start_time field value is set.

	end_time is not null but start_time is null
	start_time field value is missing. end_timefield value is set.

	logger not found: name
	Logger of the specified name (name) is not found.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Set 'weblog' loggers of all connected sentries to run from 10:00 PM to 06:00 AM only.
sentry
 | sentry-loggers
 | search name == "weblog"
 | eval start_time="22:00", end_time="06:00"
 | sentry-logger-set-time-range
sentry-logger-start
Activates a specific logger of a sentry to run at the specified interval.
Syntax
sentry-logger-start [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This command receives a sentry identifier field (guid) value, a logger name field (name) value and a logging interval field (interval) value from an input record and then sends an asynchronous RPC message to the sentry to activate the logger to run every specified interval.
Logpresso environment variable logpresso.core.sentry_rpc_parallel determines the length of the asynchronous RPC request message queue. The default value is 100 and you can adjust the length by modifying this environment variable.
The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send an RPC message to 150 sentries, the server first sends RPC messages to 100 sentries and waits until RPC responds. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries have responded or timeout has been exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
This command outputs results in the order that the server received the sentry's RPC response message, which means the order of the output records may differ from the order of the input records. Use the output data but do not rely on the order of the records.
Input Field
This query requires that the input record contains guid, name and interval field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry namespace

	interval
	32-bit Integer
	Logging interval (Unit: millisecond)

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	interval should be not null
	interval field value from input record is null.

	interval should be integer
	interval field value from input record is not an integer.

	logger is already running
	Logger is already running.

	timeout
	RPC request timeout exceeded.

	disconnected
	Disconnected while processing RPC request.

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Activate loggers of all sentries to run every 5 seconds.
sentry
 | sentry-loggers
 | eval interval = 5000
 | fields guid, name, interval
 | sentry-logger-start
sentry-logger-stop
Deactivates a specific logger of a sentry.
Syntax
sentry-logger-stop [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query requires that the input record contains guid and name field values.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

	name
	String
	Unique logger identifier in the sentry namespace

Output Fields
If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:llows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	name should be not null
	name field value from input record is null.

	name should be string
	name field value from input record is not a string.

	name should be non empty string
	name field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Deactivate loggers of all sentries.
sentry | sentry-loggers | fields guid, name | sentry-logger-stop
sentry-loggers
Loads the logger list of a sentry.
Syntax
sentry-loggers [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	name
	String
	Logger identifier

	description
	String
	Logger Description

	factory_name
	String
	Logger type identifier (e.g. syslog, wtmp)

	status
	String
	Logger status (e.g. running, stopped)

	interval
	32-bit Integer
	Logging cycle (Unit: millisecond)

	cron_schedule
	String
	Log collection schedule in cron format

	transformer
	String
	Transformer identifier

	stop_reason
	String
	Logger stop reason

	log_count
	64-bit Integer
	Collected log count (Total count of collected logs)

	drop_count
	64-bit Integer
	Dropped log count

	log_volume
	64-bit Integer
	Collected log volume (Total volume of collected logs. Unit: byte)

	drop_volume
	64-bit Integer
	Dropped log volume (Unit: byte)

	last_start_at
	Date
	Last activated time

	last_run_at
	Date
	Last executed time

	last_log_at
	Date
	_time field value of the last collected log

	last_write_at
	Date
	Last log output time (Use case: tracking system idle time)

	start_time
	String
	Logging start time (Format: HH:mm)

	end_time
	String
	Logging end time (Format: HH:mm)

	failure
	String
	Logger failure reason

Possible failure reason in failure field is as follows:
	Failure reason
	Description

	USER_REQUEST
	Inactivated upon the user request.

	SYSTEM_REQUEST
	Stopped due system request such as failover

	LOW_DISK
	Stopped due to the lack of disk space.

	TRANSFORMER_DEPENDENCY
	Transformer dependency is not resolved.

	FACTORY_DEPENDENCY
	Factory dependency is not resolved. Bundle is not running.

	STOP_EXCEPTION
	The table to store data is not found or the storage is in the read-only mode.

	LOGGER_EXCEPTION
	Unexpected error during logging.

	LOGGER_DEPENDENCY
	Logger dependency is not resolved.

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded.

	disconnected
	Disconnected while processing RPC request.

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Load logger lists of all sentries.
sentry | fields guid | sentry-loggers
sentry-netstat
Retreives the current network connection status.
Syntax
sentry-netstat [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	pid
	32-bit Integer
	Process ID

	protocol
	String
	Protocol (tcp, tcp6, udp or udp6)

	local_ip
	IP Address
	Local IP address

	local_port
	32-bit Integer
	Local Port

	remote_ip
	IP Address
	Remote IP address

	remote_port
	32-bit Integer
	Remote port

	state
	String
	Connection staus (LISTEN, ESTABLISHED or TIMEWAIT)

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Retreives the network connection status of all sentries.
sentry | fields guid | sentry-netstat
sentry-processes
Loads the process list of a sentry.
Syntax
sentry-processes [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	pid
	32-bit Integer
	Process ID

	name
	String
	Process name

	cpu_usage
	32-bit Integer
	CPU usage (Unit: %)

	working_set
	Double
	Physical memory usage (Unit: byte)

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Load process list from all sentries.
sentry | fields guid | sentry-processes
sentry-routing-table
Loads the rounting table entry list of a sentry.
Syntax
sentry-routing-table [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Fields
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	type
	String
	Routing entry type (Direct, Indirect)

	protocol
	String
	Protocol (Local, NetMgmt)

	destination
	IP Address
	Destination IP address

	mask
	IP Address
	Netmask

	forward
	IP Address
	Gateway IP address

	metric
	32-bit Integer
	Routing metric

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Loads the rounting table entry lists of all sentries.
sentry | fields guid | sentry-routing-table
sentry-top-threads
Retrieves the stack status information of the thread with highest CPU usage in a sentry. This command is useful when remotely diagnosing CPU load issue of sentry.
Syntax
sentry-top-threads [timeout=INT]
Parameter
timeout=INT
RPC timeout in seconds (default: 30 seconds)
Description
This query command sends asynchronous RPC request messages to 100 sentries at the same time and waits for responses.The RPC request message queue operates on a first-in, first-out (FIFO) basis. For example, if the Logpresso server needs to send RPC messages to 150 sentries, the server sends an RPC message to 100 sentries first and waits until RPC responses. If the waiting time exceeds the time specified in the timeout (default: 30 seconds), it is considered that an error has occurred on the sentry side. If 32 out of 100 sentries respond or timeout is exceeded, the Logpresso server sends an RPC message to the additional 32 sentries.
The query command outputs the results of RPC response messages in the order they are received. Depending on the load or network conditions of the host where Sentry is installed, the order of the responses may vary with each execution. Use the output data but do not rely on the order of the records.
Logpresso environment variable `logpresso.core.sentry_rpc_parallel` determines the length of the asynchronous RPC request message queue. The default value is `100` and you can adjust the length by modifying the value of this environment variable.
Input Field
This query command requires that the input record contains a guid field value.
	Field
	Type
	Description

	guid
	String
	Unique sentry identifier (Not relevant to GUID in JAVA)

Output Field
This query command returns the fields below in addition to the fields from input record.
	Field
	Type
	Description

	tid
	64-bit Integer
	Thread ID

	name
	String
	Thread name

	state
	String
	Thread status (RUNNABLE, BLOCKED, TIMED_WAITING, WAITING)

	priority
	32-bit Integer
	Execution priority (from 1 to 10, default: 5)

	usage
	64-bit Integer
	CPU usage time for the last one second (Unit: nanosecond)

	stacktrace
	String
	Thread stack

If any error occurs, this query command returns an _error field in addition to the fields from input record. Possible errors are as follows:
	Error Message
	Description

	guid is null
	guid field value from input record is null.

	guid should be string
	guid field value from input record is not a string.

	guid should be non empty string
	guid field value from input record is empty.

	timeout
	RPC request timeout exceeded

	disconnected
	Disconnected while processing RPC request

	not connected
	Sentry is not connected.

Depending on the system where the sentry is installed, an RPC exception message other than the above can be issued.
Usage
Retrieve the stack status of the thread with the highest CPU usage from all sentries.
sentry | fields guid | sentry-top-threads
sentryswap
Loads the data swapped in the sentry transmission queue. This is a command that can be used when a sentry is installed on the server that operates the Logpresso server.
Syntax
sentryswap [base=NAME]
Optional Parameter
base=NAME
Unique identification name for the base server connected to the sentry. If you do not specify a name, it loads the swap data of all sentries.
Base server refers to the Logpresso server (ENT, STD, and SNR) that receives logs from the sentry. The sentry can send data to different Logpresso servers. The transmission queue of the sentry must be operated separately for each base server.
Description
This is typically used to check the amount of data waiting in the transmission queue when the queue is full, or to immediately restore the system connection status by deleting the swap after backing up the data in the transmission queue.
Output fields are as follows.
_time: Timestamp
_logger: Log collector name
Key-value pairs of records in the transmission buffer
You can use 'sentryswap' when Logpresso and sentry are installed on the same host. To check the swap on a host where only the sentry is installed, check it in the Logpresso shell using the 'sentry.swapStats' command.
Threads
system threads
Checks the thread stack and lock status of the system. Administrative privileges are required to execute this command.
Syntax
system threads
Description
Output fields are as follows.
tid: Thread number
name: Thread name
state: Thread status
stacktrace: Thread stack (the same format as jstack)
system topthreads
Checks the thread stack under heavy load on the system. Administrative privileges are required to execute this command.
Syntax
system topthreads
Description
Output fields are as follows.
tid: Thread number
name: Thread name
state: Thread status
priority: A priority value between 1 and 10 (default: 5).
usage: CPU usage time in nanoseconds
stacktrace: Thread stack (the same format as jstack)
Federation Nodes
system nodes
Checks the status and settings of the system nodes constituting the Logpresso cluster. Administrative privileges are required to execute this command.
Syntax
system nodes
Description
You can also see the federation node status in the web console.
Output fields are as follows:
name: Node name
description: Node description
address: Node address
port: Node port number
failure: Whether the node connection fails
paired: Whether nodes are paired within a cluster
last_alive: The last time a response was received
last_connect: The last connected time
login_name: Login account
secure: Whether it is an encrypted communication
skip_cert_check: Whether to not validate the server certificate
connect_timeout: Connection timeout setting
read_timeout: Read timeout setting
License
system license-usages
Checks the license usage status of the system node. Administrative privileges are required to execute this command.
Syntax
system license-usages
Description
Output fields are as follows:
node: Node name
volume: License usage in bytes
count: Number of log collections
Functions
Reference Functions
$()
Returns the value of a query parameter.
Syntax
$(EXPR, [DEFAULT_EXPR])
Required Parameter
EXPR
Expression that returns a query parameter name.
Optional Parameter
DEFAULT_EXPR
Expression or value that specifies the default return value of the function when EXPR is null.
Description
A query parameter is a variable that can be called in a query or a procedure. You can declare query parameters using the set or evalc query commands. Using a query parameter is useful when dynamically assigning values to a query and executing it; a query or procedure can reference a value of a query parameter by using the $() function.
Usage
Retrieve data recorded in the YOUR_TABLE table for the last 7 days from the current time.
set from=ago("7d")
 | set to=str(now())
 | table from=$("from") to=$("to") YOUR_TABLE
Retrieve data recorded in the YOUR_TABLE table for the period specified by the query parameters _from and _to. If the query parameters have no value (null), retrieve data for the last 1 day from the current time.
table from=$("_from", ago("1d")) to=$("_to", now()) YOUR_TABLE
field()
Receives the field name as an expression and returns the field value. It is also used to refer to the field name containing the blank.
Syntax
field(EXPR)
Required Parameter
EXPR
Expression that returns a field name
Usage
json "[
 {'Registered No.': 1, 'Item':'Fender Precision Bass'},
 {'Registered No.': 2, 'Item':'Gibson Jazz'}
]"
| search field("Registered No.") == 2
whoami()
Returns the name of the account that is currently executing the query.
Syntax
whoami()
Description
The procedure is executed with owner privileges. If you call this function within a procedure, the name of the owner account is returned. The procedure is executed with owner privileges.
Usage
Return the current execution account name.
json "{}" | eval user=whoami() => "root"
Type Conversion Functions
array()
Returns an array created by evaluating all expressions specified as arguments.
Syntax
array(EXPR, ...)
Required Parameter
EXPR, ...
An expression that returns the value to be provided for each array item
Usage
json "{}" | eval array=array(1) => [1]

json "{}" | eval array=array("hello", "world") => ["hello", "world"]

json "{}"
| eval
 array=array(21 * 2, "the answer to life, the universe, and everything")
=> [42, "the answer to life, the universe, and everything"]

json "{}" | eval array=array(null) => [null]
binary()
Encodes a string into a byte array using utf-8 or specified charset.
Syntax
binary(STR_EXPR[, CHARSET])
Required Parameter
STR_EXPR
Target string expression to be converted to binary
Optional Parameter
CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the IANA Charset. https://www.iana.org/assignments/character-sets/character-sets.xhtml
Usage
json "{}" | eval blob=binary("hello, world!") => 68656c6c6f2c20776f726c6421
json "{}" | eval blob=binary(null) => null
date()
Converts the string to date type.
Syntax
date(DATE_EXPR, DATE_FMT, [LOCALE])
Required Parameter
DATE_EXPR
Source string expression to be converted to date type.
DATE_FMT
Pattern letters to specify the date and time format.
	Units of time
	Description
	Example

	G
	BC/AD
	AD

	y
	Year
	1996; 96

	M
	Month
	July; Jul; 07

	w
	Week of the year
	27

	W
	Week of the month
	2

	d
	Day of the year
	189

	D
	Day of the month
	10

	F
	Day of week number
	2

	E
	Day of the week
	Tuesday; Tue

	u
	Number of the day of the week(1=Monday, ..., 7=Sunday)
	1

	a
	AM/PM
	PM

	H
	Hour(0-23)
	0

	k
	Hour(1-24)
	24

	K
	AM/PM Hour starting with 0 (0-11)
	0

	h
	AM/PM Hour starting with 1(1-12)
	12

	m
	Minute
	30

	s
	Second
	55

	S
	Millisecond
	978

	z
	Time zone
	Pacific Standard Time; PST

	Z
	Time zone(RFC 822)
	-0800

	X
	Time zone(ISO 8601)
	-08;-0800;08:00

Optional Parameter
LOCALE
A 2-digit or 3-digit code locale specified by ISO 639. If you do not specify the locale, it is set to en. For the ISO 639 locale code, refer to the following link: https://iso639-3.sil.org/code_tables/639/.
Description
If the DATE_EXPR is null or an empty string, it returns null. If it is a type other than a string, it attempts to convert the date after automatically converting it to a string.
Usage
json "{}"
| eval date=date("2013-06-10 00:30:55.978", "yyyy-MM-dd HH:mm:ss.SSS")
=> 2013-06-10 00:30:55+0900

json "{}"
| eval date=date("2020-01-30T10:11:12.123Z", "yyyy-MM-dd'T'HH:mm:ss.SSSX")
=> 2020-01-30 19:11:12+0900

json "{}"
| eval date=date("6월 1 2020 12:34:56", "MMM dd yyyy HH:mm:ss", "ko")
=> 2020-06-01 12:34:56+0900
dict()
Returns the map created by provided key-value pairs.
Syntax
dict(KEY, VALUE, [KEY, VALUE,] ...])
Required Parameter
KEY, VALUE, [KEY, VALUE,] ...]
Key and value in order.
Description
The key can only be a string, not null, and must not overlap with other keys. If you provide multiple keys, the value you provide later is assigned. You can provide any type as a value.
Also, if the key-value pairs do not match (when the number of parameters is odd), an error will occur.
A map is a data type used in Java, and it refers to a dictionary used in languages such as Python.
Usage
json "{}" | eval dict=dict() => {}

json "{}" | eval dict=dict("a", "aaa") => {"a":"aaa"}

json "{}"
| eval dict=dict(
 "name", "John",
 "age", 30,
 "host", ip("1.2.3.4"),
 "hobby", array("music","movie","sports"),
 "birthday", date("19800101","yyyyMMdd"))
=> {"birthday":"1980-01-01 00:00:00+0900","name":"John","host":"/1.2.3.4","age":30,"hobby":["music","movie","sports"]}
double()
Converts the specified string representation of a number to an equivalent double-precision floating-point number.
Syntax
double(STR_EXPR)
Required Parameter
STR_EXPR
Target string expression to be converted to a real number
Description
If the expression is null, it returns null. If the real number conversion fails, it also returns null. If the value returned by the expression is not a string, the function automatically converts the value to a string and attempts a real number conversion.
Usage
json "{}" | eval numbers=double("1.2") => 1.2

json "{}" | eval numbers=double("0") => 0.0

json "{}" | eval numbers=double(0) => 0.0

json "{}" | eval numbers=double("invalid") => null

json "{}" | eval numbers=double(null) => null
flatten()
Takes out all elements of the recursively nested array and converts them to a flatten array. Otherwise, it returns the input value as it is. This is used to convert nested array elements to a single array before merging an array into a single string using strjoin().
Syntax
flatten(ARRAY_EXPR)
Required Parameter
ARRAY_EXPR
Expression that returns the value to be converted to a single array
Usage
json "{}"
| eval array=flatten(array(1, array(2, 3), 4))
=> [1, 2, 3, 4]
foreach()
Performs operations on an array or between multiple arrays without taking the element out of the array.
Syntax
foreach(OP_EXPR, LIST_EXPR[, ...])
Required Parameter
OP_EXPR
Expression to be performed between array elements. It uses _1 for the elements of the first array, _2 for the elements of the second array, and _N for the elements of the Nth array.
LIST_EXPR, ...
Expressions that return an array and separate them using commas (,).
Description
If the lengths of the arrays passed to the parameters are not the same, the function performs an operation after adding the elements to which null is assigned in the short array according to the number of elements constituting the long array. For example, if the first array consists of five elements and the second array consists of three elements, the command performs an operation after adding two elements whose values are null to the second array.
When a scalar value is passed as an argument instead of a list, the function replicates and extends the value to a list and performs an operation according to OP_EXPR by replacing the first list in the manner of _1 and the second list in the manner of _2, respectively.
Usage
json "{}"
| eval arr1= array(-1, -2, -3, -4, -5), arr2= array(1,2,3,4,5)
| eval _output = foreach(_1 * _2, arr1, arr2)
| order arr1, arr2, _output
=> [-1,-4,-9,-16,-25]
frombase64()
Converts a BASE64 string to a byte array.
Syntax
frombase64(BASE64_STR)
Required Parameter
BASE64_STR
String encoded with BASE64
Usage
json "{}"
| eval str=decode(frombase64("aGVsbG8sIHdvcmxkIQ=="))
=> "hello, world!"
fromhex()
Converts a hexadecimal string to byte array.
Syntax
fromhex(STR_EXPR)
Required Parameter
STR_EXPR
String to be converted to byte array. This option is case-insensitive.
Description
It returns null in the following situations:
When the input value is not a hexadecimal string
When the string length is odd
Usage
json "{}"
| eval blob=fromhex("68656c6c6f20776f726c64")
=> 68656c6c6f20776f726c64

json "{}"
| eval blob=fromhex("616263646") => null

json "{}" | eval blob=fromhex("test") => null

json "{}" | eval blob=fromhex(null) => null
groups()
Returns items that match a given group of regular expressions in a string to an array.
Syntax
groups(STR_EXPR, REGEX_PATTERN)
Required Parameter
STR_EXPR
Source string expression to be extracted
REGEX_PATTERN
Regular expression with grouping
Usage
json "{}"
| eval array=groups("Mar 29 2004 09:54:39", "(.*?) (.*?) (.*?) ")
 => [Mar, 29, 2004]
int()
Converts a string to an integer.
Syntax
int(EXPR)
Required Parameter
EXPR
Expression that returns a string to be converted to an integer. The argument must be one of a string, double, float, IP address, or array.
Description
When evaluating an expression, it works as follows:
When the value of the expression is null, this function returns null.
Even when a string cannot be converted to an integer, this function also returns null.
When the value of the expression is an array, this function converts each element of the array to an integer.
If any other type is passed as an argument, this function performs an automatic conversion and then converts it to an integer.
Usage
json "{}" | eval numbers=int("1234") => 1234

json "{}" | eval numbers=int(1234) => 1234

json "{}" | eval numbers=int(ip("0.0.0.1")) => 1

json "{}" | eval numbers=int(ip("192.168.0.1")) => -1062731775

json "{}" | eval numbers=int(12345.6789) => 12345

json "{}" | eval numbers=int(null) => null

json "{}" | eval numbers=int("invalid") => null

json "{}" | eval numbers=int(array("1", "abc", "2", 3, array(4)))
=> [1, null, 2, 3, null]
ip()
Converts a string to an IP address type.
Syntax
ip(EXPR)
Required Parameter
EXPR
Expression that returns a string to be converted to an IP address. The argument type must be one of a string, int, or long.
Description
When evaluating an expression, it works as follows:
When it is null, the expression returns null.
Even when it cannot be converted to an integer, the expression also returns null.
If any other type is passed as an argument, the expression converts it into a string and then attempts to convert it to an IP address.
IP addresses are one of the basic data types of Logpresso. The IP address starts with "/" and can represent both ipv4 and ipv6 addresses.
Usage
json "{}" | eval ip=ip("1.2.3.4") => /1.2.3.4

json "{}" | eval ip=ip("::1") => /0:0:0:0:0:0:0:1

json "{}" | eval ip=ip(4294967295) => /255.255.255.255

json "{}" | eval ip=ip(-1062731775) => /192.168.0.1

json "{}" | eval ip=ip("invalid") => null

json "{}" | eval ip=ip(null) => null
long()
Converts a string to a 64-bit integer.
Syntax
long(EXPR)
Required Parameter
EXPR
Expression that returns a string to be converted to a 64-bit integer. The argument must be one of a string, int, or IP address.
Description
When evaluating an expression, it works as follows:
When it is null, the function returns null.
Even when it cannot be converted to a 64-bit integer, the function also returns null.
If any other type is passed as an argument, the function automatically converts it into a string and then converts it to a 64-bit integer.
Usage
json "{}" | eval numbers=long("1234") => 1234

json "{}" | eval numbers=long(1234) => 1234

json "{}" | eval numbers=long(ip("0.0.0.1")) => 1

json "{}" | eval numbers=long(ip("192.168.0.1")) => 3232235521

json "{}" | eval numbers=long(null) => null

json "{}" | eval numbers=long("invalid") => null
string()
Either converts an arbitrary expression to a string, or converts a date to a string in specified date format.
Syntax
string(EXPR)
string(DATE_EXPR, DATE_FMT[, LOCALE])
string(DATE_EXPR, DATE_FMT[, TIMEZONE])

str(EXPR)
str(DATE_EXPR, DATE_FMT[, LOCALE])
str(DATE_EXPR, DATE_FMT[, TIMEZONE])
Required Parameter
EXPR
Expression that returns the value to be converted to a string
DATE_EXPR
Source string expression to be converted to date type
DATE_FMT
Define the format to use to parse strings using the same pattern letters as the ones used in date().
	Units of time
	Description
	Example

	G
	BC/AD
	AD

	y
	Year
	1996; 96

	M
	Month
	July; Jul; 07

	w
	Week of the year
	27

	W
	Week of the month
	2

	d
	Day of the year
	189

	D
	Day of the month
	10

	F
	Day of week number
	2

	E
	Day of the week
	Tuesday; Tue

	u
	Number of the day of the week(1=Monday, ..., 7=Sunday)
	1

	a
	AM/PM
	PM

	H
	Hour(0-23)
	0

	k
	Hour(1-24)
	24

	K
	AM/PM Hour starting with 0 (0-11)
	0

	h
	AM/PM Hour starting with 1(1-12)
	12

	m
	Minute
	30

	s
	Second
	55

	S
	Millisecond
	978

	z
	Time zone
	Pacific Standard Time; PST

	Z
	Time zone(RFC 822)
	-0800

	X
	Time zone(ISO 8601)
	-08;-0800;08:00

Optional Parameter
LOCALE
Alphabetical abbreviations of time zones are also supported, but note that they can have ambiguous meanings. For example, CST may be Chinese Standard Time, or US Central Standard Time or Cuban Standard Time. If you do not specify a time zone, the time zone according to the locale of the system where Logpresso is installed is used. For information on time zone abbreviations, refer to Time Zone Abbreviations – Worldwide List at the following address: https://www.timeanddate.com/time/zones/
Examples of time zone abbreviations
	Abbreviation
	GMT offset
	Description

	UTC
	GMT+0
	Coordinated Universal Time

	KST
	GMT+9
	Korea Standard Time

	CEST
	GMT+2
	Central European Summer Time

	MSK
	GMT+3
	Moscow Standard Time

	PST
	GMT-7
	Pacific Standard Time

	EST
	GMT-5
	US Eastern Standard Time

TIMEZONE
You can provide the time zone in the form of GMT+09, GMT+0900, GMT+09:00, or GMT+9:00.
Usage
json "{}" | eval str=string(1) => "1"

json "{}" | eval str=string(1.2) => "1.2"

json "{}" | eval str=string(true) => "true"

json "{}" | eval str=string(null) => null

json "{}" | eval str=string(now(),"yyyyMMddHHmmss") => "20140807164417"

json "{}"
| eval
 str=string(date("20170329","yyyyMMdd"),"yyyy-MM-dd HH:mm:ssZ","GMT+08")
 => "2017-03-28 23:00:00+0800"
tobase64()
Returns a binary value as a BASE64 string.
Syntax
tobase64(BLOB_EXPR)
Required Parameter
BLOB_EXPR
Expression to be evaluated as binary. The function returns null if it receives a non-binary value.
Usage
json "{}" | eval str=tobase64(binary("hello, world!"))
=> "aGVsbG8sIHdvcmxkIQ=="
tohex()
Converts a binary value to a hexadecimal string. If the parameter value is non-binary, it returns null.
Syntax
tohex(BLOB_EXPR)
Required Parameter
BLOB_EXPR
Binary value to be converted to hexadecimal number
Usage
json "{}" | eval hex=tohex(encode("abcde")) => "6162636465"

json "{}" | eval hex=tohex(1234) => null

json "{}" | eval hex=tohex(null) => null
unique()
If the value of the expression is an array, this function returns an array of nested elements. If it takes a single value as an argument, it returns an array containing only one element.
Syntax
unique(EXPR)
Required Parameter
EXPR
Expression to return an array to remove nested elements. The order of the arrays returned at this time is not guaranteed. If the expression is a scalar value, the function returns an array containing only one element. If the expression is null, it returns null.
Usage
Remove duplicate elements from the 1, 1, 2, "2" array
json "{}"
| eval array=unique(array(1, 1, 2, "2"))
| # Return value: ["2", 1, 2]
Type Checking Functions
isnum()
Returns true if the argument is of a numeric type (int, short, long, float, and double), and false otherwise. If the input value is null, it returns false.
Syntax
isnum(EXPR)
Required Parameter
EXPR
Expression that returns the value to be checked.
Usage
json "{}" | eval bool=isnum(1) => true

json "{}" | eval bool=isnum(1.2) => true

json "{}" | eval bool=isnum("string") => false

json "{}" | eval bool=isnum(null) => false
isnotnull()
Returns true if the argument value is not null and false otherwise.
Syntax
isnotnull(EXPR)
Required Parameter
EXPR
Expression that returns the value to be checked.
Usage
json "{}" | eval bool=isnotnull(1) => true

json "{}" | eval bool=isnotnull(null) => false
isnull()
Returns true if the argument is null and false otherwise.
Syntax
isnull(EXPR)
Required Parameter
EXPR
Expression that returns the value to be checked.
Usage
json "{}" | eval bool=isnull(null) => true

json "{}" | eval bool=isnull(1) => false
isstr()
Returns true if the expression is a string, and false otherwise. If the expression is null, it returns false.
Syntax
isstr(EXPR)
Required Parameter
EXPR
Expression that returns the value to be checked.
Usage
json "{}" | eval bool=isstr("string") => true

json "{}" | eval bool=isstr(0) => false

json "{}" | eval bool=isstr(null) => false
typeof()
Returns a string indicating the type of the given expression.
Syntax
typeof(EXPR)
Required Parameter
EXPR
Expression that returns a value to check the type.
Description
This returns the following strings depending on the data type.
string: String
short: 16-bit integer
int: 32-bit integer
long: 64-bit integer
float: 32-bit single-precision decimal
double: 64-bit single-precision decimal
bool: Boolean
ipv4: IPv4 address
ipv6: IPv6 address
date: Date
map: Map
null: null
Usage
json "{}" | eval type=typeof(null) => null

json "{}" | eval type=typeof("sample") => "string"

json "{}" | eval type=typeof(1) => "int"

json "{}" | eval type=typeof(2147483648) => "long"

json "{}" | eval type=typeof(1.2) => "double"

json "{}" | eval type=typeof(ip("1.2.3.4")) => "ipv4"

json "{}" | eval type=typeof(ip("::1")) => "ipv6"

json "{}" | eval type=typeof(true) => "bool"
Conditional Functions
case()
Evaluates an expression with branching based on multiple conditions.
Syntax
case(CONDITION_1, EXPR_1[, CONDITION_2, EXPR2, ...], DEFAULT_EXPR)
Required Parameter
CONDITION_1, EXPR_1[, CONDITION_2, EXPR2, ...]
Specify the conditional statement in pairs with the evaluation expression (EXPR_N) to be executed when it is true or not null.
DEFAULT_EXPR
Specify the expression to be performed when none of the evaluation conditions are met.
Usage
Evaluate a score over 90 as A, 80 as B, 70 as C, 60 as D, and others as F.
json "[
 {'Name': 'Alice', 'Score': 98},
 {'Name': 'Bob', 'Score': 65},
 {'Name': 'Clark', 'Score': 40}
]"
 | eval
 Grade=case(
 Score > 90, "A",
 Score > 80, "B",
 Score > 70, "C",
 Score > 60, "D",
 "F")
 | order Name, Grade, Score
When the string length of the str field is greater than 9, cut it into 9 characters and apply an ellipsis.
json "[
 {'str': 'Somewhere over the rainbow'},
 {'str': 'Wonderful'}
]"
 | eval truncated=case(len(str) > 10, concat(left(str, 10), "…"), str)
if()
Evaluates the expression to be executed according to the evaluation result (true/false).
Syntax
if(CONDITION, EXPR_TRUE, EXPR_FALSE)
Required Parameter
CONDITION
Expression to evaluate. If the conditional statement is true or not null, it is evaluated as true.
EXPR_TRUE
Expression to be evaluated when the CONDITION is evaluated is true.
EXPR_FALSE
Expression to be evaluated when the CONDITION is evaluated is false.
Usage
Evaluate the status code as ok if it is 200 or as an error if it is not.
if(status == "200", "ok", "error")
in()
Checks whether the evaluated value exists in a later set of evaluated values.
Syntax
in(VAL_EXPR, EXPR[, ...])
Required Parameter
VAL_EXPR
Expression to be evaluated.
EXPR[, ...]
Expressions to be compared with VAL_EXPR by separating them using commas (,). If it matches one of them, the function returns true, and false otherwise.
Usage
Check whether the value of the user_agent field matches one of Internet Explorer, Chrome, Safari, or Firefox.
in(user_agent, "msie", "chrome", "safari", "firefox")
Check whether the value of the user_agent field contains a Google or Yahoo string.
in(user_agent, "*google*", "*yahoo*")
Check whether the level is either 6 or 7.
in(level, 6, 7)
match()
Returns whether any part of the string matches the regular expression.
Syntax
match(VAL_EXPR, REGEX)
Required Parameter
VAL_EXPR
Expression to be evaluated. If the value is not a string, it converts the value to a string and then compares it with REGEX.
REGEX
Regular expression to compare to the VAL_EXPR value by enclosing it in a pair of double quotes (" "). If the expression is null, the function returns false.
Usage
json "{}"
| eval match=match("8 miles", "\\d+ [a-z]+") => true

json "{}"
| eval match=match(" 8 miles ", "^\\d+ [a-z]+$") => false

json "{}"
| eval match=match("sample", "\\d+ [a-z]+") => false

json "{}"
| eval match=match(123, "\\d+") => true

json "{}"
| eval match=match(null, "\\d+") => false
nvl()
If the expression to be evaluated is not null, this returns the value of the expression, and if it is null, it returns the default value.
Syntax
nvl(VAL_EXPR, DEFAULT_EXPR)
Required Parameter
VAL_EXPR
Expression to be evaluated. If the evaluated value is not null, the function returns the evaluated value.
DEFAULT_EXPR
Value to be returned when the VAL_EXPR value is null.
Usage
json "{}" | eval nvl=nvl("hello", "") => "hello"
json "{}" | eval nvl=nvl(null, "") => ""
String Functions
concat
Concatenates multiple strings into a single string. Expressions other than strings are first converted into strings and then concatenated.
Syntax
concat(EXPR, ...)
Required Parameter
EXPR, ...
Expressions that return strings, separated by commas (,). The function combines all strings returned by the expression into one string.
Usage
json "{}"
| eval str=concat("hello", ", ", "world")
 => "hello, world"
contains()
Returns whether the target string contains a specific substring.
Syntax
contains(STR_EXPR, SEARCH_STR)
Required Parameter
STR_EXPR
String expression.
SEARCH_STR
String to be checked if it is included in the string value of STR_EXPR.
Usage
json "{}" | eval isInclude=contains("foo", "o") => true

json "{}" | eval isInclude=contains("bar", "o") => false

json "{}" | eval isInclude=contains("baz", null) => false

json "{}" | eval isInclude=contains(null, null) => false
format()
Returns a new string created using given arguments.
Syntax
format(STR_FMT, PARAM[, ...])
format(STR_FMT, ARRAY_EXPR)
Required Parameter
STR_FMT
Format string including the format specifier.
For available format specifiers, refer to the Class Formatter document at the following address: https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Formatter.html
PARAM, ... or ARRAY_EXPR
Input value to be represented in a specified format. You can use an expression that returns an array (such as an expression that uses array() and groups()) to return the arguments to be applied to the format string.
Usage
json "{}"
| eval str=format("date: %04d-%02d-%02d", 2004, 3, 29)
 => "date: 2004-03-29"

json "{}"
| eval str=format("%3$s-%1$s-%2$s", groups("Mar 29 2004", "(.*?) (.*?) (.*)"))
 => "2004-Mar-29"
guid()
Always creates the GUID string value and returns it.
Syntax
guid()
Usage
guid() => "a1189dda-870e-4aea-8742-76dcb8398b49"
indexof()
Returns the position of the first occurrence of the specific pattern in the specified string. It returns -1 if the pattern is not found, and null if the string or the pattern to be matched in the string is null.
Syntax
indexof(STR_EXPR, SEARCH_EXPR[, BEGIN_EXPR])
Required Parameter
STR_EXPR
String expression.
SEARCH_EXPR
String to be checked if it is included in the string value of STR_EXPR.
Optional Parameter
BEGIN_EXPR
Position index to start searching. The index indicating the position starts with 0. The function finds the SEARCH_EXPR value from the specified position.
Usage
indexof("hello world", "world") => 6
indexof("hello world", "foo") => -1
indexof("hello world", null) => null
indexof(null, "world") => null
indexof(null, null) => null
indexof("hello world", "o", 5) => 7
kvjoin()
Concatenates all keys and values ​​into a single string.
Syntax
kvjoin(KV_DELIMIT, PAIR_DELIMIT[, REGEX])
Required Parameter
KV_DELIMIT
String that delimits the key and the value.
PAIR_DELIMIT
String that delimits each key-value pair.
Optional Parameter
REGEX
Regular expression to match against the key. The function concatenates a key and a value only if the key matches the regular expression. If you do not specify the expression, the function concatenates all key-value pairs.
Usage
Combine strings by using colons (:) as key-value delimiter and ^ as a key-value pair delimiter.
json "{}"
 | eval name="Kim", age=30
 | eval result=kvjoin(":", "^") => "name:Kim^age:30"
Concatenate strings using colons (:) as key-value delimiter and ^ as a pair delimiter by extracting only fields that match src.* regular expression.
json "{
 'src_ip':'1.2.3.4', 'src_port':45667,
 'dst_ip':'5.6.7.8', 'dst_port':80,
 'protocol':'TCP'
 }"
 | eval result=kvjoin(":", "^", "src.*")
 => "src_ip:1.2.3.4^src_port:45667"
lastindexof()
Returns the index of the last occurrence of a substring in a given string. It returns -1 if the substring is not found; null if either the substring or the string is null.
Syntax
lastindexof(STR_EXPR, SEARCH_EXPR, [FROM_EXPR])
Required Parameter
STR_EXPR
String expression
SEARCH_EXPR
Substring to search for in the string value of STR_EXPR
Optional Parameter
FROM_EXPR
Index (position) from which to start the search. The index counter starts from 0. lastindexof() returns the index of the last occurrence of a substring within a given string, searching backwards to index position 0 starting at a specified index.
The SEARCH_EXPR string does not have to be completely between index 0 and FROM_EXPR. As long as the first index of the SEARCH_EXPR string is within the index range, it will be searched. In usage 5, with FROM_EXPR set to 30 (corresponding to "L"), the range of the "Lo" string is from 30 to 31. But "L" of "Lo" is found at index 30, resulting in the return of 30.
Usages
Find the last index of " ".
json "{}"
 | eval STR_EXPR="Life is short. Use Logpresso."
 | eval LAST_INDEX=lastindexof(STR_EXPR, " ")
 | # Result: LAST_INDEX = 18
Find the index of the last occurrence of "Logpresso".
json "{}"
 | eval STR_EXPR="Life is short. Use Logpresso."
 | eval LAST_INDEX=lastindexof(STR_EXPR, "Logpresso")
 | # Result: LAST_INDEX = 19
When a string does not contain a given substring.
json "{}"
 | eval STR_EXPR="Life is short. Use Logpresso."
 | eval LAST_INDEX=lastindexof(STR_EXPR, "Python")
 | # Result: LAST_INDEX = -1
Specify the search starting position (index) and find the index of the last occurrence of a substring "Lo". Try changing the FROM_EXPR value to get different results.
String: Life is short. Use Logpresso. Long live Logpresso!
 Index: 0123456789012345678901234567890
 Range: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ (0-30)
 | json "{}"
 | eval STR_EXPR="Life is short. Use Logpresso. Long Live Logpresso!"
 | eval SEARCH_EXPR="Lo"
 | eval FROM_EXPR=30
 | eval LAST_INDEX=lastindexof(STR_EXPR, SEARCH_EXPR, FROM_EXPR)
 | # Result: LAST_INDEX = 30
Try the function indexof() to compare its result with the lastindexof() function.
json "{}"
 | eval STR_EXPR = "Life is short. Use Logpresso."
 | eval FIRST_INDEX = indexof(STR_EXPR, " ")
 | eval LAST_INDEX = lastindexof(STR_EXPR, " ")
 | # Result: FIRST_INDEX = 4,
 LAST_INDEX = 18
Compatibility
lastindexof() function is available starting from the release 4.0.2312.0.
left()
Extracts the substring with the specified length from the left side of the given string. If the length of the string is shorter than the specified length, this returns the entire string. If the argument is null, this returns null, and if this receives a value other than the string, it evaluates the value after converting it to a string.
Syntax
left(STR_EXPR, CHAR_LENGTH)
Required Parameter
STR_EXPR
String expression
CHAR_LENGTH
Number of characters to be extracted. The function returns the string after truncating as many characters from the left of the string as you specified. If the length of the string is shorter than the specified length, the function returns the entire string. You can only provide constants greater than or equal to 0.
Usage
left("0123456789", 4) => "0123"
left("0123456789", 11) => "0123456789"
left("0123456789", 0) => ""
left(1234, 2) => "12"
left(1.23, 3) => "1.2"
left(null, 3) => null
len()
Returns the length of the string. If the argument is null, it returns 0, and if it receives a value other than the string, it evaluates the value after converting it to a string.
Syntax
len(STR_EXPR)
Required Parameter
STR_EXPR
String expression
Usage
json "{}" | eval length=len("sample") => 6

json "{}" | eval length=len(null) => 0

json "{}" | eval length=len(123) => 3

json "{}" | eval length=len(1.2) => 3
lower()
Converts a string to lowercase. If the argument is null, it returns null. If this receives a value other than the string, it evaluates that value after converting it to a string.
Syntax
lower(STR_EXPR)
Required Parameter
STR_EXPR
String expression
Usage
json "{}" | eval str=lower("Hello World") => "hello world"
json "{}" | eval str=lower(1234) => "1234"
json "{}" | eval str=lower(null) => null
lpad()
Creates a string of a given length by inserting padding characters to the left of the string. If the argument is null, it returns 0, and if it receives a value other than the string, it evaluates the value after converting it to a string.
Syntax
lpad(STR_EXPR, OUTPUT_LENGTH, [PADDING_EXPR])
Required Parameter
STR_EXPR
String expression
OUTPUT_LENGTHExpression to specify the length of the result string after padding If the STR_EXPR value is longer than OUTPUT_LENGTH, the function cuts the string according to OUTPUT_LENGTH and returns it.
Optional Parameter
PADDING_EXPR
Expression to specify the padding character (default: whitespace).
Usage
json "{}" | eval lpadded=lpad("string", 10) => " string"

json "{}" | eval lpadded=lpad("string", 10, "p") => "ppppstring"

json "{}" | eval lpadded=lpad("string", 10, "pad") => "padpstring"

json "{}" | eval lpadded=lpad("string", 3, "pad") => "str"

json "{}" | eval lpadded=lpad("string", null, "pad") => null

json "{}" | eval lpadded=lpad("string", 3, null) => null
replace()
Finds all the specified patterns in the string, replaces them with the specified string.
Syntax
replace(STR_EXPR, PATTERN, REPLACE_WITH_THIS[, REGEX_FLAG])
Required Parameter
STR_EXPR
Source string expression
PATTERN
String to search for a match. If you specify "re" as REGEX_FLAG, you can use the regular expression to search for patterns.
REPLACE_WITH_THIS
Replacement string.
Optional Parameter
REGEX_FLAG
If you provide "re" as a regular expression pattern flag, the function uses the regular expression to search for patterns.
Usage
json "{}"
| eval new=replace("hello world", "world" , "logpresso")
 => "hello logpresso"

json "{}"
| eval new=replace("123412345", "12" , "!")
 => "!34!345"

json "{}"
| eval new=replace("google", "^g" , "b", "re")
 => "boogle"

json "{}"
| eval
 new=replace(
 "A:2 B:3 C:5 hahaha A:12 B:13 C:15",
 "A:(\\d+) B:\\d+ C:(\\d+)",
 "$1 $2 \\$1", "re"
)
 => "2 5 $1 hahaha 12 15 $1"
reverseip()
Returns the octets of the given IP address in reverse order. For example, if you provide 127.0.0.1, it returns 1.0.0.127. This returns null if any invalid IPv4 address string is provided.
Syntax
reverseip(EXPR)
Required Parameter
EXPR
IP address type value or an expression that returns a string in an IPv4 address format
Usage
Reverse the octet order of an IP address and concatenate it with .in-addr.arpa for reverse domain lookup.
json "{}"
| eval ip = "172.217.14.238"
| eval domain = concat(reverseip(ip), ".in-addr.arpa")
| nslookup ns="1.1.1.1" type=PTR domain output status, answers
The output fields are as follows:
ip: 172.217.14.238
domain: 238.14.217.172.in-addr.arpa
status: NO_ERROR
answers: "PTR sea30s02-in-f14.1e100.net"
See Also
concat()
nslookup
right()
Extracts the substring with the specified length from the right side of the given string. If the length of the string is shorter than the specified length, this returns the entire string. If the argument is null, this returns null, and if it receives a value other than the string, it evaluates that value after converting it to a string.
Syntax
right(EXPR, LENGTH)
Required Parameter
STR_EXPR
Source string expression
LENGTH
Number of characters to be extracted. The function returns the string after truncating as many characters from the right of the string as you specified. If the length of the string is shorter than the specified length, the function returns the entire string. You can only provide constants greater than or equal to 0.
Usage
json "{}"
| eval right=right("0123456789", 4)
 => "6789"

json "{}"
| eval right=right("0123456789", 11)
 => "0123456789"

json "{}"
| eval right=right("0123456789", 0)
 => ""

json "{}"
| eval right=right(1234, 2)
 => "34"

json "{}"
| eval right=right(1.23, 3)
 => ".23"

json "{}"
| eval right=right(null, 3)
 => null
rpad()
Creates a string of a given length by inserting padding characters to the right of the string. If the argument is null, this returns 0, and if it receives a value other than the string, it evaluates that value after converting it to a string.
Syntax
rpad(STR_EXPR, OUTPUT_LENGTH, [PADDING_EXPR])
Required Parameter
STR_EXPR
String expression
OUTPUT_LENGTH
Expression to specify the length of the result string after padding. If the STR_EXPR value is longer than OUTPUT_LENGTH, the function cuts the string according to OUTPUT_LENGTH and returns it.
Optional Parameter
PADDING_EXPR
Expression to specify the padding character (default: whitespace).
Usage
json "{}"
| eval rpadded=rpad("string", 10)
 => "string "

json "{}"
| eval rpadded=rpad("string", 10, "p")
 => "stringpppp"

json "{}"
| eval rpadded=rpad("string", 10, "pad")
 => "stringpadp"

json "{}"
| eval rpadded=rpad("string", 3, "pad")
 => "str"

json "{}"
| eval rpadded=rpad("string", null, "pad")
 => null

json "{}"
| eval rpadded=rpad("string", 3, null)
 => null
split()
Splits a string into an array of substrings based on a delimiter.
Syntax
split(STR_EXPR, DELIMITER_EXPR)
Required Parameter
STR_EXPR
Source string expression
DELIMITER_EXPR
String to be used as an array element separator in STR_EXPR. The function separates the strings by using it as separators.
Usage
json "{'url': 'ko.logpresso.com/documents'}"
| eval array=split(field("url"), "/")
 => ["ko.logpresso.com", "documents"]

json "{}"
| eval array=split("logpresso", "a")
 => ["logpresso"]

json "{}"
| eval array=split("a,b,c,d", ",")
 => ["a","b","c","d"]
strjoin()
Joins the elements of the given array into a single string. The elements of the string are separated with a specified separator.
Syntax
strjoin(DELIMIT_CHAR, ARRAY)
Required Parameter
DELIMIT_CHAR
String to use as an element separator. If the separator contains an expression instead of a constant, a syntax error occurs.
ARRAY
Array whose elements are to be joined. The function returns null if the array is null, and if the element of the array is null, null is displayed in the merged string.
Usage
json "{}" | eval merged=strjoin(",", null)
 => null

json "{}" | eval merged=strjoin(",", array(1, 2, 3))
 => "1,2,3"
substr()
Returns the substring of the source string starting at the specified position. If this receives a value other than the string, it evaluates the value after converting it to a string.
Syntax
substr(STR_EXPR, START_INDEX[, END_INDEX])
Required Parameter
STR_EXPR
Source string expression. If the expression is null, the function returns null.
START_INDEX
Starting index of the substring. The index starts at 0. If the index is negative, the position is calculated from the end of the string. The function returns null if the start position is greater than the length of the string.
Optional Parameter
END_INDEX
Last index of the substring. The character at the last index is not included in the returned substring. Omitting this index means that the last index of the substring is the same as the last index of the source string. If the index is negative, the position is calculated from the end of the string. If the end position is greater than the length of the string, it returns from the start position to the end of the string.
Usage
json "{}" | eval partion_str=substr("0123456789", 2)
 => "23456789"

json "{}" | eval partion_str=substr("0123456789", -2)
 => "89"

json "{}" | eval partion_str=substr("0123456789", 0, 3)
 => "012"

json "{}" | eval partion_str=substr("0123456789", 4, 12)
 => "456789"

json "{}" | eval partion_str=substr("0123456789", 5, 5)
 => ""

json "{}" | eval partion_str=substr("0123456789", 10, 11)
 => null

json "{}" | eval partion_str=substr("0123456789", -1, 11)
 => "9"

json "{}" | eval partion_str=substr(null, 0, 3)
=> null
trim()
Removes whitespaces (including tabs and newlines) from the left and right of the string. If it receives a value other than the string, it trims the value after converting it to a string.
Syntax
trim(STR_EXPR)
Required Parameter
STR_EXPR
Source string expression. If the expression is null, the function returns null.
Usage
json "{}" | eval trimed=trim(" hello world ")
 => "hello world"

json "{}" | eval trimed=trim(123)
 => "123"

json "{}" | eval trimed=trim(null)
 => null
upper()
Converts a string to uppercases. If it receives a value other than the string, it evaluates the value after converting it to a string.
Syntax
upper(STR_EXPR)
Required Parameter
STR_EXPR
Source string expression. If the expression is null, the function returns null.
Usage
json "{}" | eval UPPER=upper("Hello World")
 => "HELLO WORLD"

json "{}" | eval UPPER=upper(1234)
 => "1234"

json "{}" | eval UPPER=upper(null)
 => null
urldecode()
Decodes the given URL. For example, %20 is converted to a whitespace.
Syntax
urldecode(STR_EXPR[, CHARSET])
Required Parameter
STR_EXPR
Source string expression. If the expression is null, the function returns null.
Optional Parameter
CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
Usage
json "{
 'url': 'ko.logpresso.com/documents/%B7%CE%B1%D7%BA%D0%BC%AE'
}"
| eval decode=urldecode(field("url"), "EUC-KR")
 => ko.logpresso.com/documents/로그분석

json "{
 'url': 'ko.logpresso.com/documents/%EB%A1%9C%EA%B7%B8%EB%B6%84%EC%84%9D'
}"
| eval decode=urldecode(field("url"))
 => ko.logpresso.com/documents/로그분석

json "{}" | eval _line=urldecode(null) => null
urlencode()
Translates a string into application/x-www-form-urlencoded format using a specific encoding scheme.
Syntax
urlencode(STR_EXPR[, CHARSET])
Required Parameter
STR_EXPR
Source string expression. If the expression is null, the function returns null.
Optional Parameter
CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the following document: http://www.iana.org/assignments/character-sets/character-sets.xhtml
Usage
json "{'uri': '퍼센트_인코딩'}"
| eval
 decode=concat(
 "https://ko.wikipedia.org/wiki/",
 urlencode(field("uri"), "utf-8")
)
 => https://ko.wikipedia.org/wiki/%ED%8D%BC%EC%84%BC%ED%8A%B8_%EC%9D%B8%EC%BD%94%EB%94%A9

json "{}" | eval _line=urlencode(null) => null
Mathmatical Functions
abs()
Returns the absolute value of any number.
Syntax
abs(NUM_EXPR)
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, and double. This returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval abs=abs(-1) => 1

json "{}" | eval abs=abs(1) => 1

json "{}" | eval abs=abs(-1.234) => 1.234

json "{}" | eval abs=abs(1 – 43) => 42
acos()
Returns the angle, in radians, whose cosine is the specified radian expression. This is also called arccosine.
Syntax
acos(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval acos=acos(0.866158094405463)
 => 0.5233333333333333 (30 * 3.14 / 180)

json "{}" | eval acos=acos(1) => 0

json "{}" | eval acos=acos("0") => null
asin()
Returns the angle, in radians, whose sine is the specified radian expression. This is also called arcsine.
Syntax
asin(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval asin=asin(0.4997701026431024)
=> 0.5233333333333333 (30 * 3.14 / 180)

json "{}" | eval asin=asin(0.8657598394923444)
=> 1.0466666666666666 (60 * 3.14 / 180)

json "{}" | eval asin=asin(0.9999996829318346)
=> 1.5699999999999876 (90 * 3.14 / 180)

json "{}" | eval asin=asin(0) => 0

json "{}" | eval asin=asin("0") => null
atan()
Returns the angle, in radians, whose tangent is the specified radian expression. This is also called arctangent.
Syntax
atan(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval atan=atan(0.5769964003928729)
=> 0.5233333333333333 (30 * 3.14 / 180)

json "{}" | eval atan=atan(1.7299292200897902)
=> 1.0466666666666666 (60 * 3.14 / 180)

json "{}" | eval atan=atan(0) => 0

json "{}" | eval atan=atan("0") => null
ceil()
Returns the smallest integer value that is bigger than or equal to a given number. If you specify a digit after the decimal point, it rounds up from that digit. If the argument value is an integer, it returns the input as it is. This function takes only the numeric data type as an argument. If it received any other type, it returns null.
Syntax
ceil(NUM_EXPR[, NUM_DIGITS])
Required Parameter
NUM_EXPR
An expression that returns int, short, long, float, or double.
NUM_DIGITS
Number of digits to which you want to round up the number. If you specify a negative number as NUM_DIGITS, the function rounds to the left of the decimal point.
Usage
json "{}" | eval ceiling=ceil(1.1) => 2

json "{}" | eval ceiling=ceil(1.6) => 2

json "{}" | eval ceiling=ceil(1.61, 1) => 1.7

json "{}" | eval ceiling=ceil(1.0) => 1

json "{}" | eval ceiling=ceil(5) => 5

json "{}" | eval ceiling=ceil(297.5, -2) => 300

json "{}" | eval ceiling=ceil("asdf") => null

json "{}" | eval ceiling=ceil("1.1") => null

json "{}" | eval ceiling=ceil(1.1, "eediom") => null
cos()
Returns the cosine of the specified angle.
Syntax
cos(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval cos=cos(0) => 1

json "{}" | eval cos=cos(30 * 3.14 / 180) => 0.866158094405463

json "{}" | eval cos=cos(60 * 3.14 / 180) => 0.5004596890082058

json "{}" | eval cos=cos(90 * 3.14 / 180) => 0.0007963267107332633

json "{}" | eval cos=cos("0") => null
exp()
Returns the Euler's number(𝑒) raised to the power of the specified number. It returns null when it receives an argument value that is not a number.
Syntax
exp(NUM_EXPR)
Required Parameter
NUM_EXPR
Expression that returns an exponent
Usage
json "{}" | eval exp=exp(1) => 2.718281828459045

json "{}" | eval exp=exp(2) => 7.38905609893065

json "{}" | eval exp=exp(-1) => 0.36787944117144233

json "{}" | eval exp=exp("2") => null
floor()
Returns the largest integer that is less than or equal to a given number, Numbers with decimal places are rounded down to the nearest integer by default. This function takes only the numeric data type as an argument. If an integer comes in as an argument, this returns the input as it is. If it receives any other type, it returns null.
Syntax
floor(NUM_EXPR[, NUM_DIGITS])
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, or double.
NUM_DIGITS
Number of digits to which you want to round down the number. If you specify a negative number as NUM_DIGITS, the function rounds down to the left of the decimal point.
Usage
json "{}" | eval floor=floor(1.1) => 1

json "{}" | eval floor=floor(1.61, 1) => 1.6

json "{}" | eval floor=floor(531, -1) => 530

json "{}" | eval floor=floor(5) => 5

json "{}" | eval floor=floor("1.1") => null

json "{}" | eval floor=floor("asdf") => null

json "{}" | eval floor=floor(4.3, "eediom") => null
log()
Returns a natural logarithm of the specified number. If a negative number is passed to the parameter, it returns NaN (Not a Number). It returns null when it receives an argument value that is not a number.
Syntax
log(NUM_EXPR)
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, or double.
Usage
json "{}" | eval log=log(10) => 2.302585092994046
log10()
Returns the base-10 logarithm of the specified number. If a negative number is passed to the parameter, this returns NaN (Not a Number). It returns null when it receives an argument value, not a number.
Syntax
log10(NUM_EXPR)
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, or double.
Usage
json "{}" | eval result=log10(10) => 1

json "{}" | eval result=log10(100) => 2

json "{}" | eval result=log10(-10) => NaN
max()
Returns the maximum value of the given expression. It ignores any expression that is null.
Syntax
max(NUM_EXPR, ...)
Required Parameter
NUMBER, ...
Expression list that returns int, short, long, float, or double
Usage
json "{}" | eval max=max(1) => 1

json "{}" | eval max=max(1, 2) => 2

json "{}" | eval max=max(1, 2, null) => 2

json "{}" | eval max=max(null) => null
min()
Returns the minimum value of the given expression. It ignores any expression that is null.
Syntax
min(NUM_EXPR, ...)
Required Parameter
NUMBER, ...
Expression list that returns int, short, long, float, or double
Usage
json "{}" | eval min=min(1) => 1

json "{}" | eval min=min(1, 2) => 1

json "{}" | eval min=min(1, 2, null) => 1

json "{}" | eval min=min(null) => null
mod()
Returns the remainder after the number is divided by divisor.
Syntax
mod(NUM_EXPR, DIVISOR)
Required Parameter
NUM_EXPR
Expression that returns int or long.
DIVISOR
Divisor expression
Usage
json "{}" | eval mod=mod(5, 2) => 1

json "{}" | eval mod=mod(5, 0) => null

json "{}" | eval mod=mod(null, 3) => null

json "{}" | eval mod=mod("test", 3) => null
pow()
Returns the result of a number raised to a power.
Syntax
pow(NUM_EXPR, POWER)
Required Parameter
NUM_EXPR
Expression that returns a base number.
POWER
Expression that returns a power exponent.
Usage
json "{}" | eval pow=pow(2, 0) => 1

json "{}" | eval pow=pow(2, 1) => 2

json "{}" | eval pow=pow(2, 2) => 4
round()
Rounds the number to the specified number of digits. It returns null if an argument value or the digit cannot be processed.
Syntax
round(NUM_EXPR[, NUM_DIGITS])
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, or double
NUM_DIGITS
Number of digits to which you want to round the number argument. If you specify a negative number as NUM_DIGITS, the function rounds to the left of the decimal point
Usage
json "{}" | eval round=round(1.0) => 1

json "{}" | eval round=round(1.6) => 2

json "{}" | eval round=round(1.47, 1) => 1.5

json "{}" | eval round=round(1837, -2) => 1800

json "{}" | eval round=round(5) => 5
seq()
Returns a number that increases sequentially from 1 each time it is called.
Syntax
seq()
sin()
Returns the sine of the specified angle.
Syntax
sin(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval sin=sin(0) => 0

json "{}" | eval sin=sin(30 * 3.14 / 180) => 0.4997701026431024

json "{}" | eval sin=sin(60 * 3.14 / 180) => 0.8657598394923444

json "{}" | eval sin=sin(90 * 3.14 / 180) => 0.9999996829318346

json "{}" | eval sin=sin("0") => null
sqrt()
Returns the square root of the specified number. If a negative number is passed to the parameter, this returns NaN (Not a Number). It returns null when it receives an argument value that is not a number.
Syntax
sqrt(NUM_EXPR)
Required Parameter
NUM_EXPR
Expression that returns int, short, long, float, or double
Usage
sqrt(4) => 2
sqrt(-1) => NaN
tan()
Returns the tangent of the specified angle.
Syntax
tan(RADIAN_EXPR)
Required Parameter
RADIAN_EXPR
Radian expression. This function returns null when it receives an argument value that is not a number.
Usage
json "{}" | eval tan=tan(0) => 0

json "{}" | eval tan=tan(30 * 3.14 / 180) => 0.5769964003928729

json "{}" | eval tan=tan(60 * 3.14 / 180) => 1.7299292200897902

json "{}" | eval tan=tan("0") => null
Time Functions
ago()
Subtracts time (years, months, weeks, days, hours, minutes, and seconds) from the current date time.
Syntax
ago("NUM{y|mon|w|d|h|m|s}")
Required Parameter
NUM{y|mon|w|d|h|m|s}
Time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second).
Usage
This is an example based on 2019-04-26 14:31:21.
json "{}" | eval adjusted_time=ago("3d") => 2019-04-23 14:31:21

json "{}" | eval adjusted_time=ago("5m") => 2019-04-26 14:26:21

json "{}" | eval adjusted_time=ago("13h") => 2019-04-26 01:31:21

json "{}" | eval adjusted_time=ago("1y") => 2018-04-26 14:31:21
dateadd()
Adds time (years, months, weeks, days, hours, minutes, and seconds) to the current date-time.
Syntax
dateadd(DATE, "{year|mon|day|hour|min|sec|msec}", INT)
Required Parameter
DATE
Expression that returns the time type.
"{year|mon|day|hour|min|sec|msec}"
Time unit to add to the INT value, enclosed in a pair of double quotes(" "). For the meaning of each unit of time, refer to the table below.
Unit of Time
	Unit of Time
	Description

	year
	Year

	mon
	Month

	day
	Day

	hour
	Hour

	min
	Minute

	sec
	Second

	msec
	Millisecond

INT
Integer value to add to the date in the given units.
Usage
json "{}"
| eval
 _time = date("2013-09-28 11:47:00", "yyyy-MM-dd HH:mm:ss"),
 add_1_year = dateadd(date("2013-09-28 11:47:00", "yyyy-MM-dd HH:mm:ss"), "year", 1),
 subtract_1_mon = dateadd(date("2013-09-28 11:47:00", "yyyy-MM-dd HH:mm:ss"), "mon", -1),
 subtract_3_days = dateadd(date("2013-09-28 11:47:00", "yyyy-MM-dd HH:mm:ss"), "day", -3),
 add_2_hours = dateadd(date("2013-09-28 11:47:00", "yyyy-MM-dd HH:mm:ss"), "hour", 2),
 input_null = dateadd(null, "sec", 10),
 input_str = dateadd("invalid", "sec", 10)
datediff()
Returns the difference between the start date and end date in the specified time unit.
Syntax
datediff(START_DATE, END_DATE, "{year|mon|day|hour|min|sec|msec}")
Required Parameter
START_DATE
Expression that returns the start date. The function returns null if a value of any other type is received.
END_DATE
Expression that returns the last date. The function returns null if a value of any other type is received.
"{year|mon|day|hour|min|sec|msec}"
Time unit to use when calculating the difference between START_DATE and END_DATE, enclosed in a pair of double quotes. For the meaning of each unit of time, refer to the table below.
Unit of Time
	Unit of Time
	Description

	year
	Year

	mon
	Month

	day
	Day

	hour
	Hour

	min
	Minute

	sec
	Second

	msec
	Millisecond

Usage
Calculate the difference between September 29, 2014, and September 29, 2013.
json "{}"
 | set start=date("2013-09-29", "yyyy-MM-dd")
 | set end=date("2014-09-29", "yyyy-MM-dd")
 | eval year = datediff($("start"), $("end"), "year"),
 mon = datediff($("start"), $("end"), "mon"),
 day = datediff($("start"), $("end"), "day"),
 hour = datediff($("start"), $("end"), "hour"),
 min = datediff($("start"), $("end"), "min"),
 sec = datediff($("start"), $("end"), "sec"),
 msec = datediff($("start"), $("end"), "msec")
In the case of an incorrect input
json "{}"
 | eval
 error0 = datediff(null, date("2014-09-29", "yyyy-MM-dd"), "sec"),
 error1 = datediff(date("2013-09-29", "yyyy-MM-dd"), null, "min"),
 error2 = datediff("invalid", date("2014-09-29", "yyyy-MM-dd"), "min")
datepart()
Returns an integer representing the specific part (century, year, month, day, day of the week, and the rest) of the given date.
Syntax
datepart(DATE, DATEPART)
Required Parameter
DATE
Expression that returns a date type value. The function returns null if a value of any other type is received.
DATEPART
Constant string representing the part of the date argument to return. For a list of time units, refer to the following table.
	Units of time
	Type
	Description
	Example

	century
	int
	Century
	21

	day
	int
	Date (1–31)
	12

	decade
	int
	Portion of the year divided by 10
	201

	dow
	int
	Number of days in a week. Sunday (0), Saturday (6)
	1

	doy
	int
	Number of days in a year
	163

	epoch
	long
	Seconds elapsed from January 1, 1970, to the date
	1497269156

	hour
	int
	24-hour standard time (0–23)
	21

	isodow
	int
	Number of days in a week based on ISO 8601. Monday (1), Sunday (7)
	1

	isoyear
	int
	The year in which the first Monday of a year is recognized as the first day of the new year (ISO 8601)
	2017

	microseconds
	int
	Microseconds including seconds
	56371000

	millenium
	int
	Millennium (in millennia)
	3

	milliseconds
	int
	Milliseconds including seconds
	56371

	min, minute
	int
	Minute (0–59)
	5

	mon, month
	int
	Month (1–12)
	6

	msec
	int
	Milliseconds not including seconds
	377

	quarter
	int
	Quarter (1–4)
	2

	sec, seconds
	int
	Second (0–59)
	56

	timezone
	int
	UTC standard time zone (second)
	32400

	timezone_hour
	int
	UTC standard time zone (hour)
	9

	timezone_minute
	int
	UTC standard time zone (minute)
	0

	week
	int
	Number of weeks in which the first Monday of a year is recognized as the first day of the new year based (ISO 8601)
	24

	year
	int
	Year
	2017

Usage
json "{}"
| eval time=
 datepart(
 date("Jun 1 2020 12:34:56",
 "MMM dd yyyy HH:mm:ss", "ko"),
 "year"
)
 => 2020

json "{}"
| eval time=
 datepart(
 date("Jun 1 2020 12:34:56",
 "MMM dd yyyy HH:mm:ss", "ko"),
 "mon"
)
 => 6

json "{}"
| eval time=datepart(
 date(
 "Jun 1 2020 12:34:56", "MMM dd yyyy HH:mm:ss", "ko"),
 "epoch"
)
 => 1590982496
daterange()
Generates a list of dates with the specified interval between the start and end dates. It does not include the end date in the list to be returned.
Syntax
daterange(START_DATE, END_DATE, [INTERVAL{y|mon|w|d|h|m|s}])
Required Parameter
START_DATE
Expression that returns the start date. The function returns null if a value of any other type is received.
END_DATE
Expression that returns the end date. The function returns null if a value of any other type is received.
Optional Parameter
INTERVAL{y|mon|w|d|h|m|s}
Time interval in a unit of time such as y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second) (default: 1d).
To avoid system overload, if the result of the 'daterange()' function exceeds 100,000, it causes an exception to fail the query.
Usage
json "{}"
| eval mark_days=
 daterange(
 date("20150901", "yyyyMMdd"),
 date("20150908", "yyyyMMdd")
)
 => ["2015-09-01 00:00:00+0900","2015-09-02 00:00:00+0900","2015-09-03 00:00:00+0900","2015-09-04 00:00:00+0900","2015-09-05 00:00:00+0900","2015-09-06 00:00:00+0900","2015-09-07 00:00:00+0900"]

json "{}"
| eval mark_days=
 daterange(
 date("20150901", "yyyyMMdd"),
 date("20150902", "yyyyMMdd"),
 "4h"
)
 => ["2015-09-01 00:00:00+0900","2015-09-01 04:00:00+0900","2015-09-01 08:00:00+0900","2015-09-01 12:00:00+0900","2015-09-01 16:00:00+0900","2015-09-01 20:00:00+0900"]

json "{}" | eval mark_days=daterange("20150901", "20150908") => null
datetrunc()
Truncates a date-time value to the specified time unit.
Syntax
datetrunc(DATE, INT{y|mon|w|d|h|m|s})
Required Parameter
DATE
Expression that returns a date type value. If it receives a value of a different type, it returns null.
INT
Time in units of y (year), mon (month), w (week), d (day), h (hour), m (minute), and s (second).
Usage
json "{}"
| eval date=datetrunc(
 date("2014-07-14 11:13:23", "yyyy-MM-dd HH:mm:ss"),"1m"
)
 => 2014-07-14 11:13:00+0900

json "{}"
| eval date=datetrunc(
 date("2014-07-14 11:13:23", "yyyy-MM-dd HH:mm:ss"),"5m"
)
 => 2014-07-14 11:10:00+0900

json "{}"
| eval date=datetrunc(
 date("2014-07-14 11:13:23", "yyyy-MM-dd HH:mm:ss"),"1mon"
)
 => 2014-07-01 00:00:00+0900
epoch()
Receives seconds or milliseconds that have elapsed since January 1, 1970, and converts them to a date type. This interprets the parameter value as milliseconds if the parameter value is interpreted as seconds to be greater than 1 January 9999.
Syntax
epoch(NUM_EXPR)
Require Parameter
NUM_EXPR
Expression that returns the natural number in seconds or milliseconds.
Usage
json "{}"
| eval time=epoch(1435196373492)
 => 2015-06-25 10:39:33+0900
now()
Returns the system time at which the function executes.
Syntax
now()
Usage
json "{}" | eval time=now() => Sat Sep 28 23:58:41 KST 2013
IP Address Functions
ip2int()
Converts an IPv4 address object or IPv4 address string to a signed integer.
Syntax
ip2int(IP4_ADDR)
Required Parameter
IP4_ADDR
Expression that returns an IPv4 address string or IPv4 address object. The function returns null if it receives an invalid value of any other type.
Usage
json "{}" | eval ip2int=ip2int("192.168.0.1") => -1062731775
json "{}" | eval ip2int=ip2int("127.0.0.1") => 2130706433
json "{}" | eval ip2int=ip2int("255.255.255.255") => -1
json "{}" | eval ip2int=ip2int("256.256.256.256") => null
ip2long()
Converts any IPv4 address string to a numeric (long) type.
Syntax
ip2long(IP4_ADDR)
Required Parameter
IP4_ADDR
IPv4 address string expression. The function returns null if it receives an invalid value of any other type.
Usage
json "{}" | eval ip2long=ip2long("192.168.0.1") => 3232235521
json "{}" | eval ip2long=ip2long("127.0.0.1") => 2130706433
json "{}" | eval ip2long=ip2long("255.255.255.255") => 4294967295
json "{}" | eval ip2long=ip2long("256.256.256.256") => null
long2ip()
Converts any integer to an IPv4 address string.
Syntax
long2ip(LONG_INT)
Required Parameter
LONG_INT
Expression that returns a long integer. The function returns null if it receives an invalid value of any other type.
Usage
json "{}" | eval long2ip=long2ip(3232235521) => "192.168.0.1"
json "{}" | eval long2ip=long2ip(2130706433) => "127.0.0.1"
json "{}" | eval long2ip=long2ip(-1) => "255.255.255.255"
json "{}" | eval long2ip=long2ip(-1062731775) => "192.168.0.1"
network()
Returns the network address value to the given IPv4/IPv6 address and CIDR.
Syntax
network(IP_ADDR, CIDR)
Required Parameter
IP_ADDR
String or IP address of IPv4 and IPv6. IPv6 addresses are case-insensitive.
CIDR
CIDR value (integer). The CIDR value range is from 0 to 32 for IPv4 or 0 to 128 for IPv6.
Usage
json "{}"
| eval network=network(null, 32)
 => null

json "{}"
| eval network=network("192.0.2.128", 24)
 => 192.0.2.0

json "{}"
| eval network=network("192.0.2.128", 28)
 => 192.0.2.128

json "{}"
| eval network=network(ip(-1073741184), 28)
 => 192.0.2.128

json "{}"
| eval network=network("21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A", 96)
 => 21da:d3:0:2f3b:2aa:ff:0:0
Encryption & Encoding Functions
decode()
Converts a binary value to a string based on the specified encoding.
Syntax
decode(BLOB_EXPR[, CHARSET])
Required Parameter
BLOB_EXPR
Expression that returns a binary value. The function returns null if a non-binary value is received.
Optional Parameter
CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the IANA Charset. https://www.iana.org/assignments/character-sets/character-sets.xhtml
Usage
json "{}"
| eval encoded=encode("hello, world!"),
 decoded=decode(encoded)
 => encoded: 68656c6c6f2c20776f726c6421 # Binary
 => decoded: "hello, world!" # String
decrypt()
Decrypts a encrypted binary value using the Cipher class provided by Java.
Syntax
decrypt(CIPHER, KEY, DATA, [IV])
Required Parameter
CIPHER
Expression that returns a string in the form of algorithm/mode/padding. If you omit the mode and padding and provide only the algorithm, the default cryptographic algorithm is applied:
If you provide only AES, AES/CBC/NoPadding are used.
If you provide only RSA, RSA/ECB/PKCS1Padding are used.
For the algorithms, modes, and paddings available, refer to the Java Security Standard Algorithm Names document: https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
You can see the algorithms in the Cipher Algorithm Names section.
You can see the modes in the Cipher Algorithm Modes section.
You can see the paddings in the Cipher Algorithm Paddings section.
Logpresso supports various cryptographic algorithms provided by Java for compatibility. However, it is recommended not to use insecure cryptographic algorithms or modes such as DES or ECB.
 For information on cipher classes used in Java, refer to the documentation at the following address:
 https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
The following are the formats that all Java implementations must support. DES, DESede algorithms, and ECB modes are insecure and should only be used when there are compatibility issues with external systems. The numbers in parentheses indicate the key length in bits.
 - AES/CBC/NoPadding (128)
 - AES/CBC/PKCS5Padding (128)
 - AES/ECB/NoPadding (128)
 - AES/ECB/PKCS5Padding (128)
 - AES/GCM/NoPadding (128)
 - DES/CBC/NoPadding (56)
 - DES/CBC/PKCS5Padding (56)
 - DES/ECB/NoPadding (56)
 - DES/ECB/PKCS5Padding (56)
 - DESede/CBC/NoPadding (168)
 - DESede/CBC/PKCS5Padding (168)
 - DESede/ECB/NoPadding (168)
 - DESede/ECB/PKCS5Padding (168)
 - RSA/ECB/PKCS1Padding (1024, 2048)
 - RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048)
 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048)
KEY
Binary key of a size that matches the specified cryptographic algorithm. The key length according to the algorithm is as follows:
AES: 16 characters (128 bits), 24 characters (192 bits), and 32 characters (256 bits).
RSA: 128 characters (1,024 bits) and 256 characters (2,048 bits).
The encryption key length is the value obtained by dividing the key length required by the encryption algorithm into 8 bytes.
DATA
Binary data to decrypt.
Optional Parameter
IV
Binary value as an Initial Vector(IV) required when operating mode such as CBC.
Usage
json "{}"
| eval decrypted=
 decode(
 decrypt("AES",frombase64("mRcOlK9V47rjVL/RBYQYRw=="),
 frombase64("y7+NQQ9/9xGtbBq5pgBvCA==")
)
)
 => "hello, world!" # Compare with the usages of encrypt ().
encode()
Encodes a string to a binary object based on the specified encoding.
Syntax
encode(STR, [CHARSET])
Required Parameter
STR
Expression that returns a string. The function returns null if a non-string value is received.
Optional Parameter
CHARSET
Character set (default: utf-8). Use the preferred MIME name or aliases registered in the IANA Charset. https://www.iana.org/assignments/character-sets/character-sets.xhtml
Usage
json "{}"
| eval encoded=encode("hello, world!"), decoded=decode(encoded)
=> encoded: 68656c6c6f2c20776f726c6421 # Binary
=> decoded: "hello, world!" # String
encrypt()
Encrypts the binary value using the specified algorithm and key.
Syntax
encrypt(CIPHER, KEY, DATA[, IV])
Required Parameter
CIPHER
Expression that returns a string in the form of algorithm/mode/padding. If you omit the mode and padding and provide only the algorithm, the default cryptographic algorithm is applied:
If you provide only AES, AES/CBC/NoPadding are used.
If you provide only RSA, RSA/ECB/PKCS1Padding are used.
For the algorithms, modes, and paddings available, refer to the Java Security Standard Algorithm Names document: https://docs.oracle.com/en/java/javase/11/docs/specs/security/standard-names.html
You can see the algorithms in the Cipher Algorithm Names section.
You can see the modes in the Cipher Algorithm Modes section.
You can see the paddings in the Cipher Algorithm Paddings section.
Logpresso supports various cryptographic algorithms provided by Java for compatibility. However, it is recommended not to use insecure cryptographic algorithms or modes such as DES or ECB.
For information on cipher classes used in Java, refer to the documentation at the following address:
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
The following are the formats that all Java implementations must support. DES, DESede algorithms, and ECB modes are insecure and should only be used when there are compatibility issues with external systems. The numbers in parentheses indicate the key length in bits.
- AES/CBC/NoPadding (128)
- AES/CBC/PKCS5Padding (128)
- AES/ECB/NoPadding (128)
- AES/ECB/PKCS5Padding (128)
- AES/GCM/NoPadding (128)
- DES/CBC/NoPadding (56)
- DES/CBC/PKCS5Padding (56)
- DES/ECB/NoPadding (56)
- DES/ECB/PKCS5Padding (56)
- DESede/CBC/NoPadding (168)
- DESede/CBC/PKCS5Padding (168)
- DESede/ECB/NoPadding (168)
- DESede/ECB/PKCS5Padding (168)
- RSA/ECB/PKCS1Padding (1024, 2048)
- RSA/ECB/OAEPWithSHA-1AndMGF1Padding (1024, 2048)
- RSA/ECB/OAEPWithSHA-256AndMGF1Padding (1024, 2048)
KEY
Binary key of a size that matches the specified cryptographic algorithm. The key length according to the algorithm is as follows:
AES: 16 characters (128 bits), 24 characters (192 bits), and 32 characters (256 bits).
RSA: 128 characters (1,024 bits) and 256 characters (2,048 bits).
The encryption key length is the value obtained by dividing the key length required by the encryption algorithm into 8 bytes.
DATA
Binary data to encrypt.
Optional Parameter
IV
Binary value as an Initial Vector(IV) required in operating mode such as CBC.
Usage
json "{}"
| eval encrypted=tobase64(
 encrypt("AES",
 frombase64("mRcOlK9V47rjVL/RBYQYRw=="),
 binary("hello, world!")
)
)
 => "y7+NQQ9/9xGtbBq5pgBvCA==" # Refer to the usage of decrypt ().
hash()
Returns the result of performing the unidirectional hash algorithm as a binary value.
Syntax
hash(HASH_ALGO, BIN_DATA)
Required Parameter
HASH_ALGO
Hash algorithm (md5, sha1, sha256, sha384, and sha512).
BIN_DATA
Data to be hashed. The data MUST be in binary form. The function returns null if a non-binary value is received.
Usage
json "{}"
| eval hash=hash("md5", binary("hello, world!"))
 => 3adbbad1791fbae3ec908894c4963870

json "{}"
| eval hash=hash("sha1", binary("hello, world!"))
 => 1f09d30c707d53f3d16c530dd73d70a6ce7596a9

json "{}"
| eval hash=hash("sha256", binary("hello, world!"))
 => 68e656b251e67e8358bef8483ab0d51c6619f3e7a1a9f0e75838d41ff368f728

json "{}"
| eval hash=hash("sha384", binary("hello, world!"))
 => fdbd8e75a67f29f701a4e040385e2e23986303ea10239211af907fcbb83578b3e417cb71ce646efd0819dd8c088de1bd

json "{}"
| eval hash=hash("sha512", binary("hello, world!"))
 =>
6c2618358da07c830b88c5af8c3535080e8e603c88b891028a259ccdb9ac802d0fc0170c99d58affcf00786ce188fc5d753e8c6628af2071c3270d50445c4b1c

json "{}" | eval hash=hash("md5", "hello world") => null
json "{}" | eval hash=hash("sha1", null) => null
json "{}" | eval hash=hash("sha1", 1234) => null
rand()
Returns any integer greater than or equals to 0 and less than the specified boundary value.
Syntax
rand(NUM[, SEED])
Required Parameter
NUM
Integer greater than 0.
Optional Parameter
SEED
Integer value. If you provide this value, the function always returns a fixed value, not a random integer value.
The SEED parameter is used to return a value whenever a query command is executed for purposes such as debugging query commands that use this function and testing to verify the behavior of query commands. Be aware of use in the actual operating environment.
Usage
json "{}" | eval rand=rand(1000) => Any value from 0 to 999
randbytes()
Generates random bytes of the specified length.
Syntax
randbytes(LEN)
Required Parameter
LEN
Length of the binary. Only lengths from 1 to 10,240 are allowed.
Usage
json "{}" | eval rand_blob=randbytes(32)
 => 6765eab83af980a266461427739cc37a8b4ee60dab09b091282c1070a3191e2d # Binary value example
flatten()
Takes out all elements of the recursively nested array and converts them to a flatten array. Otherwise, it returns the input value as it is. This is used to convert nested array elements to a single array before merging an array into a single string using strjoin().
Syntax
flatten(ARRAY_EXPR)
Required Parameter
ARRAY_EXPR
Expression that returns the value to be converted to a single array
Usage
json "{}"
| eval array=flatten(array(1, array(2, 3), 4))
=> [1, 2, 3, 4]
foreach()
Performs operations on an array or between multiple arrays without taking the element out of the array.
Syntax
foreach(OP_EXPR, LIST_EXPR[, ...])
Required Parameter
OP_EXPR
Expression to be performed between array elements. It uses _1 for the elements of the first array, _2 for the elements of the second array, and _N for the elements of the Nth array.
LIST_EXPR, ...
Expressions that return an array and separate them using commas (,).
Description
If the lengths of the arrays passed to the parameters are not the same, the function performs an operation after adding the elements to which null is assigned in the short array according to the number of elements constituting the long array. For example, if the first array consists of five elements and the second array consists of three elements, the command performs an operation after adding two elements whose values are null to the second array.
When a scalar value is passed as an argument instead of a list, the function replicates and extends the value to a list and performs an operation according to OP_EXPR by replacing the first list in the manner of _1 and the second list in the manner of _2, respectively.
Usage
json "{}"
| eval arr1= array(-1, -2, -3, -4, -5), arr2= array(1,2,3,4,5)
| eval _output = foreach(_1 * _2, arr1, arr2)
| order arr1, arr2, _output
=> [-1,-4,-9,-16,-25]
subarray()
Returns the subarray of a given array.
Syntax
subarray(ARRAY_EXPR, INT_START, [INT_END])
ARRAY_EXPR
Expression that retruns an array
INT_START
Start index of the array to be sliced. Index numbers start from 0.
INT_END
Last index of the array to be sliced. The element in the last index is not included in the subarray.
Description
Index of the array start from 0. If an array contains 5 elements, index numbers are 0, 1, 2, 3, 4 from left to right. You can also use negative number to index the elements. If an array contains 5 elements, index number is -5, -4, -3, -2, -1 from left to right.
Usage
Typical example usages.
json "{}"
 | eval parent=array(1, 2, 3, 4, 5)
 | eval child=subarray(parent, 2)
 | # Return value:
 parent: [1, 2, 3, 4, 5]
 child: [3, 4, 5]
json "{}"
 | eval arr=subarray(array(1, 2, 3, 4, 5), 2, 4)
 | # Return value:
 arr: [3, 4]
json "{}"
 | eval arr=subarray(array(1, 2, 3, 4, 5), 1, -1)
 | # Return value:
 arr: [2, 3, 4]
When INT_START or INT_END is specified outside valid range.
json "{}"
 | eval arr=subarray(array(1, 2, 3, 4, 5), 5)
 | # Return value: null
json "{}"
 | eval arr=subarray(array(1, 2, 3, 4, 5), 0, 5)
 | # Return value:
 arr: [1, 2, 3, 4, 5]
sumarray()
Returns the sum of all elements in a given array. sumarray() function will always exclude the null and non-numeric value.
Syntax
subarray(ARRAY_EXPR)
ARRAY_EXPR
Expression that returns an array
Usage
json "{}"
| eval sum=sumarray(array(1, 2, 3, 4, 5))
| # Return value: 15
json "{}"
| eval arr=sumarray(array(1, 2, 3, null, "a", 4, 5))
| # Retrun value: 15
json "{}"
| eval arr=sumarray(array(null, null, null, "a", "b"))
| # Return value: 0
unique()
If the value of the expression is an array, this function returns an array of nested elements. If it takes a single value as an argument, it returns an array containing only one element.
Syntax
unique(EXPR)
Required Parameter
EXPR
Expression to return an array to remove nested elements. The order of the arrays returned at this time is not guaranteed. If the expression is a scalar value, the function returns an array containing only one element. If the expression is null, it returns null.
Usage
Remove duplicate elements from the 1, 1, 2, "2" array
json "{}"
| eval array=unique(array(1, 1, 2, "2"))
| # Return value: ["2", 1, 2]
valueof()
Returns the value at the location corresponding to a specific key or index in the array or composite object specified as a parameter
Syntax
valueof(COMPOUND_OBJ_EXPR, KEY_EXPR)
Required Parameter
COMPOUND_OBJ_EXPR
Expression that returns a composite object such as an associative array or an array
KEY_EXPR
Expression that points to a value at a specific location, such as a key string in an associative array or the index number of an array
Description
This function returns a value corresponding to a specific key in the associative array or the array. It returns null for the following exceptions:
When you provide an object other than an associative array or an array in a composite object expression
When the key of the associative array and the type of the key expression do not match
When the index number of the array and the type of key expression do not match
Usage
Extract the item number 2 from an array with three elements (the index number in the array starts from 0).
json "{}"
 | eval foods=array("Apple","Banana","Cucumber")
 | eval food=valueof(foods,2) => "Cucumber"
Extract an item with the key b from a map object.
json "{}"
 | eval foods=dict("a","Apple","b","Banana","c","Cucumber")
 | eval food = valueof(foods,"b") => "Banana"
CEP Functions
evtctxget()
Loads attribute information by selecting the event context associated with the key. If no event context exists with the specified key, it returns null.
Syntax
evtctxget(TOPIC, KEY, ATTR)
Required Parameter
TOPIC
Topic of the event context.
KEY
Unique key that distinguishes the event context.
ATTR
Attribute string can be one of the following strings.
counter: returns an integer indicating the number of times an event has occurred for the same key. It always returns a value greater than or equal to 1.
created: returns a date value indicating the time when the event first occurred.
expire: If the expiration date is specified, this returns a date value indicating the time at which the event context is deleted.
timeout: If the timeout is specified, tthis returns a date value indicating the time at which the context of the event is deleted due to the timeout.
rows: returns an array of all records currently stored in the event context.
Usage
When there is an event context with a topic of txmatch, 001122 of txkey, and a timeout of 10 seconds
evtctxget("txmatch", "001122", "counter") => 1
evtctxget("txmatch", "001122", "created") => "Fri May 02 15:21:50 KST 2014"
evtctxget("txmatch", "001122", "expire") => null
evtctxget("txmatch", "001122", "timeout") => "Fri May 02 15:22:00 KST 2014"
evtctxget("txmatch", "001122", "rows") => [{txkey=001122, type=send}]
evtctxgetvar()
Loads the user variable in the event context associated with the key. If no event context exists with the specified key or no variable exists, it returns null.
Syntax
evtctxgetvar(TOPIC, KEY, VARIABLE)
TOPIC
Topic of the event context.
KEY
Unique key that distinguishes the event context.
VARIABLE
User variable to load.
Usage
Use the sessionkey field value as the identifier of the web_session context and load the client_ip variable
evtctxgetvar("web_session", sessionkey, "client_ip")
evtctxsetvar()
Sets the user variable in the event context associated with the key. It returns false if the event context does not exist or the result of evaluating the variable name expression is null, and returns true if the variable setting is successful.
Syntax
evtctxsetvar(TOPIC, KEY, VARIABLE, VALUE)
TOPIC
Topic of the event context.
KEY
Unique key that distinguishes the event context
VARIABLE
User variable
VALUE
Expression that returns the value to be assigned to a variable
Usage
Use the sessionkey field value as the identifier of the web_session context and set the client_ip variable as an ip field value.
evtctxsetvar("web_session", sessionkey, "client_ip", ip)
Sonar Functions
matchbehavior()
Searches for behavior profiles and returns true if there is any matching profiled data, and false otherwise.
Syntax
matchbehavior(PROFILE_GUID, KEY_EXPR[, ...])
Required Parameter
PROFILE_GUID
Behavior profile GUID. The GUID string must be a valid behavior profile identifier. If you specify an invalid behavior profile GUID, the query fails.
KEY_EXPR, ...
Key expressions that use a comma (,) as a separator. The order of key parameters must be the same as the order of key fields specified in the behavior profile. The number of key parameters must be the same as the number of key fields specified in the behavior profile settings. Only a string or IP address is allowed for the evaluated value of the key expression. If an unauthorized type is passed as an argument, it returns a false value.
matchblackip()
Returns true if the IP blacklist contains a target value, and false otherwise.
Syntax
matchblackip(BLACKLIST_GUID, IP_ADDR_EXPR)
Required Parameter
BLACKLIST_GUID
IP blacklist GUID. The GUID string must be a valid IP blacklist identifier. If you specify an invalid IP blacklist GUID, the query fails.
IP_ADDR_EXPR
IP address expression. Only an IPv4 address or IPv4 string is allowed in the target expression. If it is a type not allowed in the target expression, this returns a false value.
matchfeed()
Returns true if the threat intelligence feed contains a target value, and false otherwise.
Syntax
matchfeed(FEED_ID, STR_EXPR)
Required Parameter
FEED_ID
Identifier of the threat intelligence feed. If you specify an invalid feed string constant, the query fails.
See the following table for available identifiers. In addition, you can use the feeds provided by apps installed on Logpresso Sonar or Logpresso Maestro.
	FEED_ID
	Type
	Description

	otx
	ip
	Real-time IP address reputation feed in the format of OTX (Open Threat Exchange)

	tor
	ip
	Real-time Tor exit node IP address information feed

	mdl_domain
	domain
	Real-time malicious domain name (e.g. C&C domain)

	mdl_ip
	ip
	Real-time malicious domain name (e.g. C&C IP address)

	abusech
	domain
	Real-time malicious domain name (e.g. C&C domain) feed provided by abuse.ch

	malc0de
	md5
	Real-time Malware database provided by malc0de.com

STR_EXPR
Expression to return the string to be searched in the feed
matchnet()
Returns true if an IP subnet contains an IP address, and false otherwise.
Syntax
matchnet(NET_GUID, IP_ADDR_EXPR)
Required Parameter
NET_GUID
IP subnet GUID. The GUID string must be a valid IP subnet identifier. If you specify an invalid GUID, the query fails.
IP_ADDR_EXPR
IP address expression. Only an IPv4 address or IPv4 strings are allowed in the target expression. If it is a type not allowed in the target expression, the function returns a false.
matchport()
Returns true if the specified port group contains a combination of a port and a protocol and false otherwise.
Syntax
matchport(PORT_GUID, PORT_EXPR[, PROTO_EXPR])
Required Parameter
PORT_GUID
Port group GUID. The GUID string must be a valid port group identifier. If you specify an invalid port group GUID, the query fails.
PORT_EXPR
Expression to specify the port number. The value must be an integer between 0 and 65535. The function returns false if the expression cannot be evaluated or the value is not valid.
Optional Parameter
PROTO_EXPR
Expression to specify the protocol. Only TCP or UDP strings are allowed. The function returns false if the expression cannot be evaluated or the value is not valid. When the expression is null, it returns true if the port group contains either TCP or UDP.
matchsig()
Returns true if the string matches one or more of the patterns in the pattern group, and false if no pattern is matched.
Syntax
matchsig(SIG_GUID, STR_EXPR)
Required Parameter
SIG_GUID
Pattern group GUID. The GUID string must be a valid pattern group identifier. If you specify an invalid pattern group GUID, the query fails.
STR_EXPR
Expression to return the string to be searched. The evaluated value must be a string. If the expression cannot be evaluated or the value is not valid, the function returns false.
Description
For example, if you set pattern "REMOTE_ADDR" and ("fputs" or "fwrite"), filter expression path == "lib.php", rule zb now connect, the command checks whether the REMOTE_ADDR string and the fputs or fwirte string are searched at the same time in the target field value, and then checks whether the path field value matches the lib.php string.
Example of patterns
	expr (required)
	expr2 (optional)
	rule (required)

	Keyword pattern: Primary high-speed detection
	Boolean expression: Secondary filtering
	Pattern name

	"addextendedproc" and "xp_cmdshell"
	
	xp_cmdshell

	"REMOTE_ADDR" and ("fputs" or "fwrite")
	path == "lib.php"
	zb now_connect

Aggregate Functions
array()
Creates an array of values that belong to the group. It collects up to 100 items for each group and creates an array as a set that may also have duplicate values.
If you want to extract all the unique sets of values that belong to a group, use the values() function.
Syntax
array(EXPR)
Required Parameter
EXPR
Expression of any type
avg()
Calculates the average of all expressions that belong to the group. It eliminates expression which returns null or a non-numeric value.
Syntax
avg(NUM_EXPR)
Required parameter
NUM_EXPR
Numeric expression
Usage
Create 2 fields with 100 random records with numbers in the range of 1 to 100 and calculate the average.
| json "{}"
| repeat count=100 | eval n1=rand(101), n2=rand(101)
| stats avg(n1) as n1_avg, avg(n2) as n2_avg
corr()
Calculates the Pearson correlation coefficient for each group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
corr(EXPR_X, EXPR_Y)
Required Parameter
EXPR_X
Numeric expression
EXPR_Y
Second numeric expression
Usage
json "{}"
| repeat count=100
| eval n1=seq(), n2=sqrt(seq())
| stats corr(n1, n2)
count()
Count the number of rows in each group. If no expression is specified, it returns the total number of rows. If an expression is specified, it returns the number of rows with a non-null value.
Syntax
count
count(EXPR)
Optional Parameter
EXPR
An expression of any type
cov()
Calculates the covariance for each group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
cov(EXPR_X, EXPR_Y)
Required Parameter
EXPR_X
Numeric expression
EXPR_Y
Second numeric expression
dc()
Count the number of unique values that belong to the group.
Syntax
dc(EXPR)
Required Parameter
EXPR
Expression of any type
estdc()
Estimates distinct count of the values that belong to the group.
Syntax
estdc(EXPR[, BIT])
Required Parameter
EXPR
Expression of any type
Optional Parameter
BIT
Bit number between 4 and 24 (defaut: 16). The higher the bit number, the higher the accuracy and memory usage.
first()
Returns the first value in a group.
Syntax
first(EXPR)
Required Parameter
EXPR
Expression of any type
last()
Returns the last value in a group.
Syntax
last(EXPR)
Required Parameter
EXPR
Expression of any type
max()
Returns the maximum value in the expression. It ignores an expression that returns null. Comparing different types results in undefined behavior.
Syntax
max(EXPR)
Required Parameter
EXPR
Expression of any type
min()
Returns the minimum value in the expression. It ignores an expression that is null. Comparing different types results in undefined behavior.
Syntax
min(EXPR)
Required Parameter
EXPR
Expression of any type
slope()
Calculates the slope of the X/Y linear regression line by group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
slope(EXPR_X, EXPR_Y)
Required Parameter
EXPR_X
Numeric expression to calculate the slope of the linear regression line.
EXPR_Y
Second numeric expression to calculate the slope of the linear regression line.
stddev()
Calculates the standard deviation of all expressions that belong to the group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
stddev(NUM_EXPR)
Required Parameter
NUM_EXPR
Numeric expression
sum()
Calculates the sum of all expressions that belong to the group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
sum(NUM_EXPR)
Required Parameter
NUM_EXPR
Numeric expression
values()
Extracts a set of all the unique values that belong to the group. It collects up to 100 items for the group and creates an array as a set of unique values.
Syntax
values(EXPR)
Required Parameter
EXPR
Expression of any type
var()
Calculates the variance of all expressions that belong to the group. It eliminates expression pairs where either expression in the pair returns null or a non-numeric value.
Syntax
var(NUM_EXPR)
Required Parameter
NUM_EXPR
Numeric expression
image1.png
database database

/)

\—

cols

— e~

database

confdb

image2.png
name commits. ® last_commit last_msg

1 aragne-core 10 10 2021-12-10 15:40:10+0900

2 aragne-cron 23 23 2021-12-15 14:13:28+0900

3 aragne-dom 3 3 2021-12-10 15:40:05+0900

4 aragne-dom-localhosi 32 32 2021-12-10 15:42:40+0900 updated 1 User
5 aragne-hdfs-storage 1 1 2021-12-10 15:40:06+0900

6 aragne-httpd 2 2 2021-12-10 15:40:10+0900 opened server /0.0.0.
7 aragne-log-api 27 27 2021-12-10 15:42:53+0900

8 aragne-logdb 22 22 2022-03-11 10:52:52+0900

9 aragne-logdb-groovy]]

10 aragne-1logdb-nashort]]

11 aragne-logstorage 20 20 2021-12-10 15:43:0140900 created sonar_response_00001 table
12 aragne-msgbus 2 2 2021-12-10 15:40:04+0900

13 aragne-ntp 1 1 2021-12-10 15:39:50+8900

14 aragne-rpc 4 4 2021-12-10 15:42:52+40900 opened addr=0.0.0.0, port=7148, key=sonar-base, trust=sonar-ca
15 aragne-snmp.]]

16 aragne-syslog]]

17 aragne-webconsole 1 1 2021-12-10 15:40:02+0900

18 logpresso 118 118 2021-12-10 15:43:27+0900

19 logpresso-base 2 2 2021-12-10 15:42:52+8900

20 logpresso-core 1 1 2021-12-10 15:40:05+0900

21 logpresso-flowmon]]

22 logpresso-ftp]]

23 logpresso-index 2 2 2021-12-10 15:40:04+0900

24 logpresso-license]]

25 logpresso-logstorage 3 3 2021-12-10 15:40:03+0900

26 logpresso-redis]]

27 logpresso-replicator 1 1 2021-12-10 15:40:04+0900

28 logpresso-sentry 1 1 2021-12-10 15:40:02+0900

29 logpresso-tap]]

3e sonar-core 2 2 2021-12-10 15:42:52+8900

31 sonar-node 5 5 2021-12-10 15:42:52+8900

32 sonar-web 1 1 2021-12-10 15:40:10+0900

image3.png
name

agent
bindings

port_scanners

image4.png
doc_id 1 doc_prev doc_rev addr key._: @ rort trust_alias

1 o 1 0.0.0.0 | sonar-base 7140 sonar-ca

